NP

căn (3x^2+5x+1) - căn (3x^2+5x-7) = 2

 

NT
13 tháng 10 2023 lúc 14:03

ĐKXĐ: \(\left\{{}\begin{matrix}3x^2+5x+1>=0\\3x^2+5x-7>=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=\dfrac{-5+\sqrt{13}}{6}\\x< =\dfrac{-5-\sqrt{13}}{6}\end{matrix}\right.\\\left[{}\begin{matrix}x>=\dfrac{-5+\sqrt{109}}{6}\\x< =\dfrac{-5-\sqrt{109}}{6}\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x< =\dfrac{-5-\sqrt{109}}{6}\\x>=\dfrac{-5+\sqrt{109}}{6}\end{matrix}\right.\)

\(\sqrt{3x^2+5x+1}-\sqrt{3x^2+5x-7}=2\)

=>\(\sqrt{3x^2+5x+1}-3-\sqrt{3x^2+5x-7}+1=0\)

=>\(\dfrac{3x^2+5x+1-9}{\sqrt{3x^2+5x+1}+3}-\dfrac{3x^2+5x-7-1}{\sqrt{3x^2+5x-7}+1}=0\)

=>\(3x^2+5x-8=0\)

=>\(\left(3x+8\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{8}{3}\left(nhận\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
EH
Xem chi tiết
DP
Xem chi tiết
LC
Xem chi tiết
LD
Xem chi tiết
MN
Xem chi tiết
NB
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
KU
Xem chi tiết