Những câu hỏi liên quan
TV
Xem chi tiết
NT
20 tháng 1 2022 lúc 22:01

a: Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

b: Ta có: ΔBMH=ΔCNH

nên BM=CN

=>AM=AN

hay ΔAMN cân tại A

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

mà AH⊥BC

nên AH⊥MN

Bình luận (1)
HB
Xem chi tiết
NT
7 tháng 2 2022 lúc 14:50

a, Ta có : AD = AB + BD ; AE = AC + CE

mà AB = AC (gt); BD = CE (gt) 

=> AD = AE 

Vậy tam giác ADE cân tại A

Ta có : \(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)do AB = AC; AD = AE(cmt) 

=> DE // BC ( Ta lét đảo ) 

b, Vì ^ABC = ^MDB ( đối đỉnh ) 

^ACB = ^NCE ( đối đỉnh ) 

mà ^ABC = ^ACB ( tam giác ABC cân tại A ) 

=> ^MDB = ^NCE 

Xét tam giác DMB và tam giác ENC có : 

BD = EC (cmt) 

^MDB = ^NCE ( cmt ) 

Vậy tam giác DMB = tam giác ENC ( ch - gn ) 

=> DM = EN ( 2 cạnh tương ứng ) 

=> BM = NC ( 2 cạnh tương ứng ) 

c, Ta có : ^ABM = ^MBC - ^ABC 

^ACN = ^NCM = ^ACB 

=> ^ABM = ^ACN 

Xét tam giác ABM và tam giác ACN có : 

AB = AC (gt) 

^ABM = ^ACN (cmt) 

BM = CN (cmt) 

Vậy tam giác ABM = tam giác ACN ( c.g.c ) 

=> ^AMB = ^ANC ( 2 góc tương ứng ) 

Xét tam giác AMN có : ^AMB = ^ANC (cmt) 

Vậy tam giác AMN cân tại A

Bình luận (0)
AM
7 tháng 2 2022 lúc 14:51

Bạn vẽ hình giúp mình nha

a. Tam giác ABC cân tại A nên AB=AC

Ta có: AE=AC+CE, AD=AB+BD 

Mà AC=AB, CE=BD

\(\Rightarrow AE=AD\) \(\Rightarrow\Delta ADE\) cân tại A

Xét \(\Delta ADE\) có: \(\dfrac{AB}{BD}=\dfrac{AC}{CE}\)

Áp dụng định lí Ta-let đảo \(\Rightarrow BC//DE\) (đpcm)

Xét \(\Delta BDM\) vuông tại M và \(\Delta CEN\) vuông tại N có:

\(\left\{{}\begin{matrix}BD=CE\\\widehat{MBD}=\widehat{NEC}\left(cùng.bằng.\widehat{ABC}\right)\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta BDM\)=\(\Delta CEN\) \(\Rightarrow\)DM=EN (đpcm)

Kẻ \(AH\perp BC\) \(\left(H\in BC\right)\)

Ta có \(\Delta ABC\) cân tại A nên AH vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow BH=CH\) 

Mà MB=CN (\(\Delta BDM\)=\(\Delta CEN\)\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\) cân tại A

 

 

Bình luận (0)
HB
7 tháng 2 2022 lúc 14:51

Có ai giải giúp mik kobucminh

Bình luận (0)
SS
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 7 2023 lúc 21:07

a: Xét ΔMDB và ΔMEF có

MD=ME

góc DMB=góc EMF

MB=MF

=>ΔMDB=ΔMEF

b: ΔMDB=ΔMEF

=>DB=EF

=>EC=EF

=>ΔECF cân tại E

 

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 7 2023 lúc 20:53

a: Xét ΔMDB và ΔMEF có

MD=ME

góc DMB=góc EMF

MB=MF

=>ΔMDB=ΔMEF

b: ΔMDB=ΔMEF

=>DB=EF

=>EC=EF

=>ΔECF cân tại E

Bình luận (0)
H24
Xem chi tiết
TC
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
XN
Xem chi tiết
NM
24 tháng 5 2022 lúc 14:19

A B C M N

Hai tg AMC và tg ABC có chung đường cao từ C->AB nên

\(\dfrac{S_{AMC}}{S_{ABC}}=\dfrac{AM}{AB}=\dfrac{1}{3}\Rightarrow S_{AMC}=\dfrac{1}{3}xS_{ABC}\)

Hai tg AMN và tg AMC có chung đường cao từ A->CM nên

\(\dfrac{S_{AMN}}{S_{AMC}}=\dfrac{MN}{MC}=\dfrac{1}{2}\Rightarrow S_{AMN}=\dfrac{1}{2}xS_{AMC}=\dfrac{1}{2}x\dfrac{1}{3}xS_{ABC}=\dfrac{1}{6}xS_{ABC}\)

\(S_{BMC}=S_{ABC}-S_{AMC}=S_{ABC}-\dfrac{1}{3}xS_{ABC}=\dfrac{2}{3}xS_{ABC}\)

Hai tg BMN và tg BMC có chung đường cao từ B->MC nên

\(\dfrac{S_{BMN}}{S_{BMC}}=\dfrac{MN}{MC}=\dfrac{1}{2}\Rightarrow S_{BMN}=\dfrac{1}{2}xS_{BMC}=\dfrac{1}{2}x\dfrac{2}{3}xS_{ABC}=\dfrac{1}{3}xS_{ABC}\)

\(S_{ANB}=S_{AMN}+S_{BMN}=\dfrac{1}{6}xS_{ABC}+\dfrac{1}{3}xS_{ABC}=\dfrac{1}{2}xS_{ABC}=40cm^2\)

Bình luận (0)
XN
24 tháng 5 2022 lúc 17:48

thanks bạn rất nhìu ^^

 

Bình luận (0)