cho (a+b+c)(ab+bc+ac)=abc
cm a^5+b^5+c^5=(a+b+c)^5
Cho abc=1.Tìm min P=\(\dfrac{ab}{a^5+b^5+ab}\)+\(\dfrac{bc}{b^5+c^5+bc}+\dfrac{ac}{c^5+a^5+ac}\)
Cho a,b,c >0 tm abc=1
\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^+bc}+\frac{ac}{a^5+c^5+ac}\le1 \)
Ta có BĐT phụ: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\)*đúng*
\(\Rightarrow a^5+b^5+ab\ge a^2b^2\left(a+b\right)+ab=ab\left(ab\left(a+b\right)+1\right)\)
\(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\ge\dfrac{ab}{ab\left(ab\left(a+b\right)+1\right)}=\dfrac{1}{ab\left(a+b\right)+1}\)
\(=\dfrac{c}{abc\left(a+b\right)+c}=\dfrac{c}{a+b+c}\left(abc=1\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{a+b+c}{a+b+c}=1=VP\)
Khi \(a=b=c=1\)
Cho \(\hept{\begin{cases}a,b,c>0\\abc=1\end{cases}}\)Tìm giá trị nhỏ nhất của
\(P=\frac{ab}{a^5+b^5+ab}+\frac{bc}{c^5+b^5+bc}+\frac{ac}{a^5+c^5+ac}\)
Cho a,b,c là 3 số đôi 1 không đối nhau thỏa mãn ab+bc+ac=5. Tính P= (a+b)^2(b+c)^2(c+a)^2/(5+a^2)(5+b^2)(5+c^2)
Cho a;b;c thỏa mãn \(a\ge b\ge c\) và ab+bc+ac=5
\(CMR:\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ac\right)\ge-4\)
Cho a,b,c>0. Chứng minh:
a^5/(a^2+ab+b^2) + b^5/(b^2+bc+c^2) +c^5/(c^2+ac+c^2) >= (a^3+b^3+c^3)/3
cho a,b,c duong, abc=1
tim Max \(A=\dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\)
Với x;y dương, ta có BĐT:
\(x^5+y^5\ge x^2y^2\left(x+y\right)\)
Thật vậy, BĐT tương đương:
\(x^5-x^4y+y^5-xy^4\ge0\)
\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (luôn đúng)
Áp dụng:
\(\Rightarrow A\le\dfrac{ab}{a^2b^2\left(a+b\right)+ab}+\dfrac{bc}{b^2c^2\left(b+c\right)+bc}+\dfrac{ca}{c^2a^2\left(c+a\right)+ca}\)
\(A\le\dfrac{1}{ab\left(a+b\right)+1}+\dfrac{1}{bc\left(b+c\right)+1}+\dfrac{1}{ca\left(c+a\right)+1}\)
\(A\le\dfrac{abc}{ab\left(a+b\right)+abc}+\dfrac{abc}{bc\left(b+c\right)+abc}+\dfrac{abc}{ca\left(c+a\right)+abc}=\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=1\)
Có thể giúp mình không ạ!
a) \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\) biết abc=1
b) \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c\)
c) \(\dfrac{ab}{a^5+ab+b^5}+\dfrac{bc}{b^5+bc+c^5}+\dfrac{ac}{a^5+ac+c^5}\) biết abc=1
Xin cảm ơn các bạn trước ạ!
b)Ta có: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c\left(1\right)\)
\(\Leftrightarrow\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^4+b^4+c^4}{abc}\ge a+b+c\)
\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta xét BĐT phụ: \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
Cộng các BĐT phụ vừa chứng minh:
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Áp dụng vào bài, ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng lần nữa:
\(a^2b^2+b^2c^2+c^2a^2\ge ab^2c+bc^2a+a^2bc=abc\left(a+b+c\right)\)
Vậy ta suy ra được điều phải chứng minh
a) Đặt vế trái BĐT là P
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)8.8}}=\dfrac{3a}{4}\)
Tương tự: \(\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{1+a}{8}+\dfrac{1+b}{8}\ge\dfrac{3c}{4}\)
Cộng vế theo vế các BĐT vừa chứng minh
\(P+\dfrac{6+2a+2b+2c}{8}\ge\dfrac{3a+3b+3c}{4}\)
\(P\ge\dfrac{3a+3b+3c}{4}-\dfrac{2\left(3+a+b+c\right)}{8}=\dfrac{3a+3b+3c-a-b-c-3}{4}=\dfrac{2\left(a+b+c\right)-3}{4}\)
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow P\ge\dfrac{2.3-3}{4}=\dfrac{3}{4}\)
Câu c) là Cm \(\le\)1 ạ, Mìk thiếu đề
Bài 1: Tìm các số hữu tỷ a, b, c biết:
a, ab = 3 / 5, bc = 4 / 5, ca = 3 / 4
b, a. ( a + b + c ) = -12; b. ( a + b + c ) = 18; c. ( a + b + c ) = 30
c, ab = c; bc = 4a; ac = 9b
Bài 2: Cho A bằng:
A = ( 1 / 22 - 1 ) . ( 1 / 32 - 1 ) . ( 1 / 42 - 1 ) ... ( 1 / 1002 - 1 )
So sánh A với - 1 / 2
Chú ý: " / " là phân số; " . " là dấu nhân cấp 2
@Uchiha_Shisui