Tìm \(x\in N\)sao cho: \(\left(x-5\right)=1002004-1-3-5-...-1999\)
1/ Tìm số tự nhiên nhỏ nhất có 3 chữ số sao cho chia cho 11 dư 5 ; chia cho 13 dư 7
2/ Chứng minh rằng : \(10^n+5^3⋮9\)
3/ Tìm x, y \(\in N\) biết : \(\left(x+1\right)\left(2y-5\right):143\)
Bài 2:
10^n có tổng các chữ số là 1
5^3 có tổng các chữ số là 8
=>10^n+5^3 có tổng các chữ số là 9
=>10^n+5^3 chia hết cho 9
1.tìm \(x\in Z\) sao cho \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
1.tìm \(x\in Z\) sao cho \(\dfrac{x-1}{x+5}\) là 1 số nguyên
1.tìm \(x,y\in Z\) sao cho \(\left(x-1\right).\left(y-3\right)=7\) là 1 số nguyên
325253737747⁸⁹⁰⁷⁶⁵⁴³ chuyển đổi sang STN là?
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
1.lim(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\))
2.Tìm tất cả các giá trị của a sao cho lim\(\frac{4^n+a.5^n}{\left(2a-1\right).5^n+2^n}\)=1
3. Cho \(a\in R\)và lim(\(\sqrt{n^2+an+4}-n+1=5\)).Tìm a
4.Cho\(Lim_{(x->2)}f\left(x\right)=5\). Tìm giới hạn \(lim_{\left(x->2\right)}\sqrt{[f\left(x\right)-3]x}\)
Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)
Tìm \(x;y\in N\)sao cho: \(\text{3x-y+xy=8}\)
Tìm x; y sao cho: \(\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}=0\)
b)
Vì \(\left(3x-1\right)^{2018}\ge0\forall x\)
\(\left(y+\frac{3}{5}\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\forall x;y\)
Để thỏa mãn đ/b => \(\left(3x-1\right)^{2018}=0\Leftrightarrow x=\frac{1}{3}\) và \(\left(y+\frac{3}{5}\right)^{2020}=0\Leftrightarrow y=\frac{-3}{5}\)
Vậy....
a)Ta có : \(3x-y+xy=8=>3\left(x-1\right)+y\left(x-1\right)=5=>\left(3+y\right)\left(x-1\right)=5\)
Đến đây lập bảng là ra .
b)Ta có : \(\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}=0\)
Lại có : \(\left(3x-1\right)^{2018}\ge0;\left(y+\frac{3}{5}\right)^{2020}\ge0=>\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\)
\(=>\hept{\begin{cases}3x-1=0\\y+\frac{3}{5}=0\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{3}{5}\end{cases}}\)
Tìm m sao cho:
\(x^2-\left(2m+5\right)x+m^2+5m\ge0,\forall x\in\left(1;+\infty\right)\)
Tìm x biết:
f)\(32^{-x}.16^x=1024;\left(x\in N\right)\) g)\(3^{x-1}+5.3^{x-1}=162;\left(x\in N\right)\)
h)\(\left(2x-1\right)^6=\left(2x-1\right)^8\) i)\(5^x+5^{x+2}=650;\left(x\in N\right)\)
\(f\)) \(32^{-x}.16^x=1024\)
\(\left(2\right)^{-5x}.2^{4x}=2^{10}\)
\(\Leftrightarrow2^{4x-5x}=2^{10}\)
\(\Leftrightarrow2^{-x}=2^{10}\)
\(\Leftrightarrow-x=10\)
\(\Leftrightarrow x=-10\)
\(g\)) \(3^{x-1}.5+3^{x-1}=162\)
\(3^{x-1}.\left(5+1\right)=162\)
\(3^{x-1}.6=162\)
\(3^{x-1}=162:6\)
\(3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
\(h\)) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^6.\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)^6.\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=1\\\left(2x-1\right)^2=\left(1,-1\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x-1=-1\\2x-1=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x=0\\2x=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=0\\x=1\end{cases}}\)
\(i\)) \(5^x+5^{x+2}=650\)
\(5^x.\left(1+5^2\right)=650\)
\(5^x.26=650\)
\(5^x=650:26\)
\(5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
bài1 tìm x biết: a.\(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
bài :2 tìm x và y biết:a. \(\left(3x-5\right)^{100}+\left(2y+1\right)^{100}\le0\)
bài3 tìm các số nguyên x và y sao cho: a. \(\left(x+2\right)^2+2\left(y-3\right)^2< 4\)
bai 4 tìm n \(\in\)N biết:a.\(2008^n=1\) b.\(5^n+5^{n+2}=650\) c.\(32^n.16^n=512\) d.\(3^n+5.3^n=162\)
1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)
=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
Bài 2. Ta có: (3x - 5)100 \(\ge\)0 \(\forall\)x
(2y + 1)100 \(\ge\)0 \(\forall\)y
=> (3x - 5)100 + (2y + 1)100 \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vậy ...
1. x( 6 - x )2003 = ( 6 - x )2003
<=> x( 6 - x )2003 - ( 6 - x )2003 = 0
<=> ( x - 1 )( 6 - x )2003 = 0
<=> \(\orbr{\begin{cases}x-1=0\\6-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=6\end{cases}}\)
2. \(\left(3x-5\right)^{100}+\left(2y+1\right)^{100}\le0\)
\(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\forall x\\\left(2y+1\right)^{100}\ge0\forall y\end{cases}\Rightarrow}\left(3x-5\right)^{100}+\left(2y+1\right)^{100}\ge0\forall x,y\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
1/ Tìm các n \(\in\)Z thỏa: \(\left(n^2-1\right)\left(n^2-11\right)\left(n^2-21\right)\left(n^2-31\right)< 0\).
2/ Tìm các x \(\in\)Z sao cho: \(\left(4x-3\right)⋮\left(x-2\right)\).
3/ Tìm x, y \(\in\)Z biết: \(\left(2x-5\right)\left(y-6\right)=17\).
4/ Chứng minh: nếu a \(⋮\)b thì:
a/ \(a⋮\left(-b\right)\) b/ \(\left(a\right)⋮b\)và \(\left(-a\right)⋮\left(-b\right)\) c/ \(\left|a\right|⋮\left|b\right|\)
5/ Tìm các số nguyên n sao cho:
a/ \(n\left(n+4\right)< 0\) b/ \(\left(n+4\right)\left(5-n\right)< 0\)
6/ Chứng tỏ: \(\left(-1\right)a=-a\)
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
Tìm \(x\in N\) sao cho \(\left(2^x-8\right)^3+\left(4^x+13\right)^3=\left(4^x+2^x+5\right)^3\)
(2x−8)3 + (4x+13)3 = (4x+2x+5)3
\(\Leftrightarrow\)(2x - 8 + 4x + 13) [(2x - 8)2 + (2x-8)(4x + 13) + (4x + 13)2] = (4x + 2x +5)3
\(\Leftrightarrow\)(2x + 4x + 5) [(2x - 8)2 + (2x-8)(4x + 13) + (4x + 13)2] = (4x + 2x +5)3
\(\Leftrightarrow\)(2x - 8)2 + (2x-8)(4x + 13) + (4x + 13)2= (4x + 2x +5)2
\(\Leftrightarrow\)(2x -8 + 4x + 13)2 - (2x -8)(4x + 13) = (4x + 2x +5)2
\(\Leftrightarrow\)(4x +2x + 5)2 - (2x -8)(4x +13) = (4x + 2x +5)2
\(\Leftrightarrow\) (2x - 8) (4x + 13) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2^x-8=0\\4^x+13=0\end{matrix}\right.\Leftrightarrow}x=4\)
Vậy x = 4.