Cho M =2+2^3+2^4+...+2^20 . Chứng minh rằng M chia hết cho 15
a,Tính S=4+7+10+13+......2014
b,Chứng minh rằng n.(n+2013)chia hết cho 2 với mọi số tự nhiên n
c,Cho M=2+2^2+2^3+.....2^20.Chứng tỏ rằng M chia cho 15
\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)
Cho M=2^2+2^3+.....+2^20.Chứng minh rằng M chia hết cho 15
Chứng minh rằng:
a, M = 8^8 + 2^20 chia hết cho 7
b, A = 10^28 + 8 chia hết cho 72
c, T = 2 + 2^2 + 2^3 + … + 2^60 chia hết cho 3, 7, 15
Chứng minh rằng M = 2 + 22 + 23 + ... + 220 chia hết cho 15
=>\(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
Ta thấy mỗi cặp đều chia hết cho 15 =>M \(\div\)15
Đây là ý của mik chứ mik ko chắc nha.Chúc bạn học tốt!
lm M=2+2^2+2^3...+2^100 chia hết cho 15
a ) chứng minh rằng : n.(n+2013) chia hết cho 2 với mọi số tự nhiên n
b) Cho M = \(2+2^2+2^3+2^4+.......+2^{20}\) Chứng tỏ rằng M chia hết cho 5
a)n(n+2013)
xét 2 tr hp.
tr hp 1:n là số lẻ
=>n+2013 là số chẵn
=>n(n+2013) là số chẵn =>n(n+2013) chia hết cho 2.
tr hp 2:nlà số chẵn
=>n(n+2013) là số chẵn=> n(n+2013) chia hết cho 2.
b)M=21+22+23+24+....+220
M=2.1+2.2+2.4+2.8 +25.1+25.2+25.4+25.8+.......+217.1+217.2+217.4+217.8
M=2(1+2+4+8)+25(1+2+4+8)+....+217(1+2+4+8)
M=2.15+25.15+....+217.15
=>M chiia hết cho 5
M = 2+22 +23+24+.....+220 chứng tỏ rằng M chia hết cho 5
Số số hạng của tổng là :
(20-1) : 1 +1 = 20 ( số hạng )
Ta ghép 4 số vào 1 nhóm , như vậy có số nhóm là :
20 : 4 = 5 ( nhóm )
Ta có :
M = 2+22+23+24+24+.....+220
= ( 2 + 22+23+24)+.....+(217+218+219+220)
= 2.(1+2+3+4)+.....+217.(1+2+3+4)
= 2.10+....217.10
= (2+...+217 ) . 10 chia hết cho 5
Vậy ta có điều phải chứng minh.
a, Tính S = 4 + 7 + 10 + 13 + ...... + 2014
b, Chứng minh rằng n.( n + 2013 ) chia hết cho 2 với mọi số tự nhiên n
c, Cho M = 2 + 22 + 23 + ....+ 220 Chứng tỏ rằng M chia hết cho 5
Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath
A = 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + .... + 2 mũ 20 . Chứng minh rằng A chia hết cho 3, 7 ,15
chia hết cho 3
A=(2 mũ 2+2 mũ 3)+(2 MŨ 4+2 mũ 5)+...+(2 mũ 19+2 mũ 20)
A=(2 mũ 2 +2 mũ 3)+2 mũ 2.(2 mũ 2+2 mũ 3)+...+2 mũ 17.(2 mũ 2+2 mũ 3)
A=12+2 mũ 2.12+...+2 mũ 17.12
A=12.(1+2 mũ 2+...+2 mũ 17)
vậy A chia hết cho 3
chia hết cho7
A=(2 mũ 2+2 mũ 3 +2 mũ 4).....(2 mũ 18+2 mũ 19 +2 mũ 20)
A=(2 mũ 2 +2 mũ 3 +2 mũ 4).....2 mũ 16.(2 mũ 2+2 mũ 3+2 mũ 4)
A=28.....2 mũ 16.28
28.(1+...+2 mũ 16)
vậy a .....cho 7
chia hất cho 15
A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....(2 mũ 17+2 mũ 18+2 mũ 19+2 mũ 20)
A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....2 mũ 15.(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5)
A=60.....2 mũ 15.60
A=60.(1+...+2 mũ 15)
vậy a........cho 15.
CHÚC BẠN HOK TỐT!
Câu 1: Cho A = 2 + 22 + 23 + 24 + ... + 299 + 2100
Chứng minh biểu thức A chia hết cho 31
Câu 2: Cho M = 2 + 22 + 23 + ... + 220
Chứng tỏ rằng M chia hết cho 15
C1:\(A=2_{ }\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1++2+4+8+16\right)\)
\(A=31\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
C2: Tương Tự
1) Tìm x thuộc N để A, B chia hết cho 2 :
A= 18+8+12+x
B = 76+9+x
2) Cho a thuộc N biết a chia hết cho 12 dư 8. Hỏi a có chia hết cho 4, 6 không
3) Tìm x :
a, 3^x = 243
b, x^5 = 32
c, x^6 = 729
4) Chứng minh rằng :
a, 10^28 +8 chia hết cho 3
b, 8^8 + 2^20 chia hết cho 1
5) Cho A = 2+ 2^2 + 2^3 + .......... + 2^60
Chứng minh A chia hết cho 3, 7, 15
Bài 3:
a: \(3^x=243\)
nên \(3^x=3^5\)
hay x=5
b: \(x^5=32\)
nên \(x^5=2^5\)
hay x=2
c: \(x^6=729\)
\(\Leftrightarrow x^2=9\)
=>x=3 hoặc x=-3