Những câu hỏi liên quan
NO
Xem chi tiết
HH

Kb iik !!!

Bình luận (0)
HT
Xem chi tiết
H24
12 tháng 7 2017 lúc 17:00

PTTĐ:

\(\sqrt{2x^2-10x+13}-(-x+3)+\sqrt{26x^2-24x+8}-(5x-2)=0\)

\(\Rightarrow \dfrac{(x-2)^2}{\sqrt{2x^2-10x+13}-x+3}+\dfrac{(x-2)^2}{\sqrt{26x^2-24x+8}+5x-2}=0\)

Giả sử \(\sqrt{2x^2-10x+13} >x-3\)

ok tới đây giải ra nhé nghiệm là \(x=2\)

Bình luận (0)
NA
Xem chi tiết
TN
8 tháng 9 2017 lúc 18:31

a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)

Có: \(VT=\left|1-x\right|+\left|x-2\right|\)

\(\ge\left|1-x+x-2\right|=3=VP\)

Khi \(x=0;x=3\)

b)\(\sqrt{x^2-10x+25}=3-19x\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)

\(\Leftrightarrow\left|x-5\right|=3-19x\)

\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)

\(\Leftrightarrow-360x^2+104x+16=0\)

\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)

\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)

c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)

\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

Bình luận (0)
NT
Xem chi tiết
DT
9 tháng 9 2017 lúc 13:50

\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3

<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3

<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3

<=> x - 1 + x - 2 = 3

<=> 2x - 3 = 3

<=> x = \(\dfrac{6}{2}\)= 3

b ,

\(\sqrt{x^2-10x+25}=3-19x\)

<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)

<=> \(\left|x-5\right|=3-19x\)

<=> \(x-5=3-19x\)

\(\Leftrightarrow x+19x=3+5\)

\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)

Bình luận (0)
TT
Xem chi tiết
LL
19 tháng 9 2021 lúc 12:20

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

Bình luận (1)
JE
Xem chi tiết
NL
23 tháng 10 2019 lúc 14:02

a/ ĐKXĐ: ...

\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)

Đặt \(\sqrt{x^2-5x-6}=a\ge0\)

\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)

b/ ĐKXĐ: ...

\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)

Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)

\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)

c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)

Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)

\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
23 tháng 10 2019 lúc 14:07

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)

\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)

\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)

e/ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)

Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)

\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)

\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)

f/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)

\(\frac{1}{a}+1+a=3a^2\)

\(\Leftrightarrow3a^3-a^2-a-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)

\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NB
12 tháng 7 2018 lúc 17:43

\(\sqrt{x^2+2x+5}=-x^2-2x+1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

Ta thấy :

\(-\left(x+1\right)^2+2\le2\) Với \(\forall x\in R\)

\(\sqrt{\left(x+1\right)^2+4}\ge2\) Với \(\forall x\in R\)

\(\Rightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\) Khi x + 1 = 0 \(\Leftrightarrow\) x = -1

Vậy Phương trình có nghiệm x = -1 .

Bình luận (0)
NB
12 tháng 7 2018 lúc 17:52

\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta thấy :

\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\) \(\ge1\) Với \(\forall x\in R\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\ge3\) Với \(\forall x\in R\)

\(-x^2+6x-5=-\left(x-3\right)^2+4\le4\) Với \(\forall x\in R\)

\(\Rightarrow VT\ge4\) ; \(VP\le4\)

\(\Rightarrow VT=VP=4\)

Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\) x = 3

Vậy phương trình có nghiệm x = 3 .

Bình luận (0)
PL
12 tháng 7 2018 lúc 17:53

\(a.\sqrt{x^2+2x+5}=-x^2-2x+1\)

Ta có : \(VT=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\)\(2\)

\(VP=-x^2-2x+1=-\left(x^2+2x+1\right)+2=-\left(x+1\right)^2+2\)\(2\)

Để : \(\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

\(x=-1\)

KL...........

\(b.\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta có : \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\text{≥}1\left(1\right)\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\text{≥}3\left(2\right)\)

\(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\text{≥}4\left(3\right)\)

Từ ( 1 ; 2 ) , ta có :
\(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\text{≥}4\left(4\right)\)

Từ ( 3 ; 4 ) để : \(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}=-\left(x-3\right)^2+4\)

\(x=3\)

KL..........

Bình luận (0)
LH
Xem chi tiết
CN
Xem chi tiết
LD
24 tháng 8 2020 lúc 10:56

\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+5\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x+5\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-\left(x+5\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-x-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
CQ
24 tháng 8 2020 lúc 11:06

a) 

\(\sqrt{x+3}+2\sqrt{4\left(x+3\right)}-\frac{1}{3}\sqrt{9\left(x+3\right)}=8\)  

\(\sqrt{x+3}+2\cdot2\sqrt{x+3}-\frac{1}{3}\cdot3\sqrt{x+3}=8\)    

\(\sqrt{x+3}+4\sqrt{x+3}-\sqrt{x+3}=8\)    

\(4\sqrt{x+3}=8\)          

\(\sqrt{x+3}=2\) 

\(\orbr{\begin{cases}2\ge0\left(llđ\right)\\x+3=2^2\end{cases}}\) 

\(x+3=4\) 

\(x=1\) 

b) 

\(\orbr{\begin{cases}x^2+10x+25\ge0\\4x^2-4x+1=x^2+10x+25\end{cases}}\) 

\(\orbr{\begin{cases}\left(x+5\right)^2\ge0\left(lld\right)\\3x^2-6x-24=0\end{cases}}\) 

\(\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)        

Bình luận (0)
 Khách vãng lai đã xóa