Những câu hỏi liên quan
H24
Xem chi tiết
NB
Xem chi tiết
NT
9 tháng 7 2020 lúc 13:30

Đặt \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

Ta có: \(\frac{1}{1+\sqrt{2}}>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)

\(\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)

...

\(\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

Cộng các bất đẳng thức trên lại với nhau, ta được:

\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

\(\Leftrightarrow A>\frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\)

\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\right)\)

\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{81}-1\right)=\frac{1}{2}\cdot\left(9-1\right)=\frac{1}{2}\cdot8=4\)

\(\Leftrightarrow A>4\)(đpcm)

Bình luận (0)
H24
Xem chi tiết
NB
Xem chi tiết
LT
Xem chi tiết
ML
23 tháng 5 2018 lúc 10:57

Với mọi n nguyên dương ta có:

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)

Với k nguyên dương thì 

\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)

\(=\sqrt{k+1}-\sqrt{k-1}\)(*)

Đặt A = vế trái. Áp dụng (*) ta có:

\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)

\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)

...

\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)

Cộng tất cả lại

\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)

3. 

Theo bất đẳng thức cô si ta có: 

\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)

Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)

Bình luận (0)
KP
Xem chi tiết
VD
Xem chi tiết
TT
Xem chi tiết
NL
24 tháng 9 2019 lúc 18:51

\(D=\sqrt{5}-\sqrt{13-4\sqrt{\left(\sqrt{5}-2\right)^2}}=\sqrt{5}-\sqrt{13-4\left(\sqrt{5}-2\right)}\)

\(=\sqrt{5}-\sqrt{21-4\sqrt{5}}=\sqrt{5}-\sqrt{\left(2\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-2\sqrt{5}+1=1-\sqrt{5}\)

\(B=10\sqrt{5}+\left|1-\sqrt{5}\right|-\frac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=10\sqrt{5}+\sqrt{5}-1-\sqrt{5}+1=10\sqrt{5}\)

\(C=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{12\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\sqrt{3}-1+2+\sqrt{3}+2\left(3-\sqrt{3}\right)=7\)

Bình luận (0)
HV
Xem chi tiết