Rút gọn
a√b+b√b/√a+√b - √ab ( a>0, b>0)
1. Cho \(a^3+b^3+c^3=3abc\) (a+b+c ≠0)
Tính giá trị biểu thức:
\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
2. Rút gọn
a) \(\dfrac{x^3+x^2-6x}{x^3-4x}\)
b) \(\dfrac{x^2+8x+7}{x^3+2x^2+x}\)
Bài 1:
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\left(do.a+b+c\ne0\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)
\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{\left(3a\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)
Bài 2:
a) \(=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)
b) \(=\dfrac{x\left(x+1\right)+7\left(x+1\right)}{x\left(x^2+2x+1\right)}=\dfrac{\left(x+1\right)\left(x+7\right)}{x\left(x+1\right)^2}=\dfrac{x+7}{x\left(x+1\right)}=\dfrac{x+7}{x^2+x}\)
1. rút gọn
a, \(\sqrt{54a}\) - \(\sqrt{16a}\) + \(\sqrt{49a}\) (a>0)
m, \(\dfrac{20}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
nếu câu a sai thì hãy làm câu b nhé
Rút gọn
a) (a-b-c)-(-c+b+a)-(a-b)
b)a(b+c)-a(b+d)-(1+ac-ad)
a: \(\left(a-b-c\right)-\left(-c+b+a\right)-\left(a-b\right)\)
\(=a-b-c+c-b-a-a+b\)
\(=-a-b\)
b: \(a\left(b+c\right)-a\left(b+d\right)-\left(1+ac-ad\right)\)
\(=ab+ac-ab-ad-1-ac+ad\)
=-1
Rút gọn B=( √b/a–√(ab) – √a/√(ab)–b).(a√b–b√a) với a>0; b>0; a≠b.
\(=\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right)\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\dfrac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
=b-a
1,Rút gọn
A=(\(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\))x(x-\(\dfrac{x-4}{\sqrt{x}-2}\))với x≥0;x≠4
2,Xác định a,b để đồ thị hàm số y=ax+b đi qua điểm A(2;1) vàB(1;2)
\(1,A=\dfrac{2x+1-x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}-2\right)\\ A=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\left(x+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+1}\\ 2,\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\Leftrightarrow y=-x-3\)
BÀI TOÁN: Bỏ dấu ngoặc và rút gọn
a) a(b-c+d)-ad;
b) (a-b)(c+d)+(-a+b)(c+d);
c) (a+b)(c+d)-(a-b)(c+d)
a: =ab-ac+ad-ad=ab-ac
b:=(c+d)(a-b-a+b)=0
các bạn giúp mình làm bài toán này nhé !
a: =ab-ac+ad-ad=ab-ac
b:=(c+d)(a-b-a+b)=0
HT
Cho biểu thức
A=a+b-√ab/a√a+b√b - √a-√b-1/a-b
( với a>0,b>0,a khác b)
a) Rút gọn b+a
b) Tính giá trị của A biết a-b=1
a: \(A=\dfrac{1}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
\(=\dfrac{\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}+1}{a-b}=\dfrac{1}{a-b}\)
b: Khi a-b=1 thì A=1/1=1
1. Rút gọn
a, A=(4x+3y)2 + (4x-3y)2
b,B=(x-23)-(x+2)3
c,C=(x+2y)2+2.(x+2y) (x-2y) + (x-2y)2
2. Tìm x
a, x2+12x+36=0
b,16x2-8x+1=0
c,x3+3x2+3x+1=0
2a) pt <=> (x + 6)^2 = 0
<=> x = -6
b) pt <=> (4x - 1)^2 = 0
<=> x = 1/4
c) pt<=> (x + 1)^3 = 0
<=> x = -1
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
1. Rút gọn
a, A=(4x+3y)2 + (4x-3y)2
b,B=(x-23)-(x+2)3
c,C=(x+2y)2+2.(x+2y) (x-2y) + (x-2y)2
2. Tìm x
a, x2+12x+36=0
b,16x2-8x+1=0
c,x3+3x2+3x+1=0
Bài 2:
a: Ta có: \(x^2+12x+36=0\)
\(\Leftrightarrow x+6=0\)
hay x=-6
b: Ta có: \(16x^2-8x+1=0\)
\(\Leftrightarrow4x-1=0\)
hay \(x=\dfrac{1}{4}\)
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)
\(=\left(x+2y+x-2y\right)^2\)
\(=4x^2\)