Những câu hỏi liên quan
KN
Xem chi tiết
DN
22 tháng 3 2018 lúc 18:00

a, = 1

b 1 = S 

Bình luận (0)
H24
Xem chi tiết
H24
10 tháng 10 2019 lúc 12:40

\(S=1+2+2^2+2^3+...+2^9\)

\(2S=2+2^2+2^3+2^4+...+2^{10}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{10}\right)-\left(1+2+2^2+2^3+...+2^9\right)\)

\(S=2^{10}-1\)

Ta có: \(5.2^8=\left(4+1\right).2^8=4.2^8+2^8=2^2.2^8+2^8=2^{10}+2^8\)

Vậy 210 - 1 < 210 + 28 hay S < 5.28

Bình luận (0)
PQ
Xem chi tiết
PT
Xem chi tiết
KL
9 tháng 1 2024 lúc 13:58

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

Bình luận (0)
NL
9 tháng 1 2024 lúc 14:00

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

Bình luận (0)
KL
9 tháng 1 2024 lúc 14:05

Bài 2

H = 3 + 3² + 3³ + ... + 3²⁰²²

⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³

⇒2H = 3H - H

= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)

= 3²⁰²³ - 3

⇒ H = (3²⁰²³ - 3) : 2

Bình luận (0)
EA
Xem chi tiết
CH
8 tháng 1 2018 lúc 16:28

Bài 1: Em tham khảo tại đây nhé.

Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
HD
Xem chi tiết
PN
14 tháng 3 2016 lúc 12:02

nếu mún thì 1 k

còn ko mún thì 50 k

Bình luận (0)
BT
Xem chi tiết
HD
23 tháng 1 2016 lúc 14:47

a) S = 2(1+2+3+4+5)+2.2.(1+2+3+4+5)+...+2.20(1+2+3+4+5)

= 2.15 + 2.2.15+...+2.20.15.Vì vậy S chia hết cho 15

b)Các chữ số chia hết cho 15 có tận cùng là 0 hoặc 5.

Mà S chia hết cho 2 nên S có chữ số tận cùng là 0.

c) Ta có:

S = 2.1+2.2+2.3+...+2.100

= 2(1+2+3+...+100)

=2.5050(bạn có thể xem cách tính này trong SGK tập 1 trang 19)

= 10100

Bình luận (0)
ND
Xem chi tiết
NT
12 tháng 4 2021 lúc 13:14

a) ĐKXĐ: \(x\ne1\)

Ta có: \(x^2-8x+7=0\)

\(\Leftrightarrow x^2-x-7x+7=0\)

\(\Leftrightarrow x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=7\left(nhận\right)\end{matrix}\right.\)

Thay x=7 vào B, ta được:

\(B=\dfrac{1}{7-1}=\dfrac{1}{6}\)

Vậy: Khi \(x^2-8x+7=0\) thì \(B=\dfrac{1}{6}\)

Bình luận (0)
NT
12 tháng 4 2021 lúc 13:15

b) Ta có: \(A=\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}\)

\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(=\dfrac{x^2+2+x^2-1}{x^3-1}\)

\(=\dfrac{2x^2+1}{x^3-1}\)

Bình luận (0)
NT
12 tháng 4 2021 lúc 13:17

c) Ta có: S=A-B

\(=\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\)

\(=\dfrac{2x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2x^2+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x}{x^2+x+1}\)

Bình luận (0)
TH
Xem chi tiết
GD

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

Bình luận (0)
NT
1 tháng 8 2023 lúc 9:29

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

Bình luận (0)