Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TH
Xem chi tiết
GN
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
AH
17 tháng 9 2021 lúc 17:03

Lời giải:
PT $\Leftrightarrow (x^2+1-x)(x^2+1+x)=y^2$

Gọi $d$ là ƯCLN của $x^2+1-x, x^2+1+x$.

$\Rightarrow (x^2+1+x)-(x^2+1-x)\vdots d\Leftrightarrow 2x\vdots d$

Dễ thấy $x^2+1-x=x(x-1)+1$ lẻ nên $d$ lẻ.

$\Rightarrow x\vdots d$

Kết hợp với $x^2+x+1\vdots d$ suy ra $1\vdots d\Rightarrow d=1$

Vậy $x^2+1-x, x^2+1+x$ nguyên tố cùng nhau 

Do đó để tích của 2 số này là scp thì $x^2+1-x=a^2, x^2+1+x=b^2$ với $a,b$ là các số tự nhiên.

$x^2+1-x=a^2$
$4x^2-4x+4=4a^2$
$(2x-1)^2+3=(2a)^2$

$3=(2a)^2-(2x-1)^2=(2a-2x+1)(2a+2x-1)$

Xét các TH $(2a-2x+1,2a+2x-1)=(1,3),(3,1),(-1,-3),(-3,-1)$ ta thu được $x=0$ hoặc $x=1$

Nếu $x=1$ thì $y^2=3$ (loại)

Nếu $x=0$ thì $y^2=1\Rightarrow y=\pm 1$

Vậy $(x,y)=(0,\pm 1)$

Bình luận (0)
AH
17 tháng 9 2021 lúc 17:03

Bạn lưu ý lần sau gõ đề bằng công thức toán (bộ gõ nằm trong biểu tượng $\sum$ trái khung soạn thảo)

Bình luận (0)
TN
Xem chi tiết
LP
2 tháng 4 2018 lúc 18:55

Dễ mà :v

PT <=> 2x2 + 2y2 + 2xy - 2x + 2y = 0

     <=> (x - 1)2 + (y + 1)2 + (x + y)2 = 0

=> x = 1; y = -1.

Bình luận (0)
VL
Xem chi tiết
NH
31 tháng 3 2018 lúc 5:10

Ta có: x^2+(x+1)^2=y^4+(y+1)^4 

<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1) 

<=> x^2 +x + 1 = {y(y+1) +1}^2 

Do VP là SCP, ta có: 

* Nếu x >=0 
=> x^2 < x^2 +x + 1 <= (x+1)^2 
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2 
=> x =0 => y=0 hay y=-1 

* Nếu x <0 hay x <= -1 (do x nguyên) 
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2 
=> Để VT là SCP 
=> (x+2)^2 = x^2 + x +1 
=> x=-1 => y=0 hay y=-1

Bình luận (0)
H24
31 tháng 3 2018 lúc 6:02

Ta có: x^2+(x+1)^2=y^4+(y+1)^4 

<=> x^2 + x = y(y+1){y(y+1+2} = {y(y+1)}^2 + 2y(y+1) 

<=> x^2 +x + 1 = {y(y+1) +1}^2 

Do VP là SCP, ta có: 

* Nếu x >=0 
=> x^2 < x^2 +x + 1 <= (x+1)^2 
=> Để VT là SCP => x^2 +x + 1 = (x+1)^2 
=> x =0 => y=0 hay y=-1 

* Nếu x <0 hay x <= -1 (do x nguyên) 
=> (x+2)^2 <= x^2 + x +1 < (x+1)^2 
=> Để VT là SCP 
=> (x+2)^2 = x^2 + x +1 
=> x=-1 => y=0 hay y=-1

@_@

Bình luận (0)
NC
Xem chi tiết
H24
31 tháng 7 2016 lúc 21:47

\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)(*)
Đặt \(y^2+3y+\frac{3}{2}=a\)
khi đó : (*) \(x^2=\left(a-\frac{3}{2}\right)\left(a+\frac{3}{2}\right)=a^2-\frac{9}{4}\Leftrightarrow\left(4x-4a\right)\left(x+a\right)=-9\)
Lập bảng là ok nhé 
 

Bình luận (0)
ST
Xem chi tiết
ST
Xem chi tiết
DQ
23 tháng 11 2020 lúc 4:34

\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))

TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)

TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)

TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa