Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

LT

Tìm nghiệm nguyên của pt (x^2 +1)^2 -x^2 =y^2

AH
17 tháng 9 2021 lúc 17:03

Lời giải:
PT $\Leftrightarrow (x^2+1-x)(x^2+1+x)=y^2$

Gọi $d$ là ƯCLN của $x^2+1-x, x^2+1+x$.

$\Rightarrow (x^2+1+x)-(x^2+1-x)\vdots d\Leftrightarrow 2x\vdots d$

Dễ thấy $x^2+1-x=x(x-1)+1$ lẻ nên $d$ lẻ.

$\Rightarrow x\vdots d$

Kết hợp với $x^2+x+1\vdots d$ suy ra $1\vdots d\Rightarrow d=1$

Vậy $x^2+1-x, x^2+1+x$ nguyên tố cùng nhau 

Do đó để tích của 2 số này là scp thì $x^2+1-x=a^2, x^2+1+x=b^2$ với $a,b$ là các số tự nhiên.

$x^2+1-x=a^2$
$4x^2-4x+4=4a^2$
$(2x-1)^2+3=(2a)^2$

$3=(2a)^2-(2x-1)^2=(2a-2x+1)(2a+2x-1)$

Xét các TH $(2a-2x+1,2a+2x-1)=(1,3),(3,1),(-1,-3),(-3,-1)$ ta thu được $x=0$ hoặc $x=1$

Nếu $x=1$ thì $y^2=3$ (loại)

Nếu $x=0$ thì $y^2=1\Rightarrow y=\pm 1$

Vậy $(x,y)=(0,\pm 1)$

Bình luận (0)
AH
17 tháng 9 2021 lúc 17:03

Bạn lưu ý lần sau gõ đề bằng công thức toán (bộ gõ nằm trong biểu tượng $\sum$ trái khung soạn thảo)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
VL
Xem chi tiết
PN
Xem chi tiết
VT
Xem chi tiết
NC
Xem chi tiết
GN
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
ST
Xem chi tiết