Những câu hỏi liên quan
TM
Xem chi tiết
PT
14 tháng 12 2017 lúc 6:28

<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1

Khi đó Pt 36√x−2 +4√x−2+4√y−1 +√y−1=28

theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24

                                  và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4

Pt đã cho có VT>= 28 Dấu "=" xảy ra 

36√x−2 =4√x−2⇔x=11

và 4√y−1 =√y−1⇔y=5

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

Bình luận (0)
ND
Xem chi tiết
NL
8 tháng 2 2020 lúc 21:23

ĐKXĐ:...

\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

Ta có:

\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{9}{\sqrt{x-2}}=\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
LS
Xem chi tiết
NL
4 tháng 9 2020 lúc 16:40

ĐKXĐ; ....

\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

Ta có:

\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)

Vậy pt có cặp nghiệm duy nhất \(\left(x;y\right)=\left(11;5\right)\)

Bình luận (0)
PN
Xem chi tiết
NC
14 tháng 1 2020 lúc 15:05

ĐK: \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)

pt <=> \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)=28\)(1)

Áp dụng cô-si 

VT \(\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=28\)

(1) xảy ra <=> \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\)

<=> x = 11 ; y = 5 ( tm ) 

Kết luận:...

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
HN
3 tháng 1 2017 lúc 15:52

ĐKXĐ : \(\hept{\begin{cases}x>2\\y>1\end{cases}}\)

PT đã cho tương đương với \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}-24\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y+1}-4\right)=0\)

\(\Leftrightarrow\frac{\left(2\sqrt{x-2}-6\right)^2}{\sqrt{x-2}}+\frac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}-6=0\\\sqrt{y-1}-2=0\end{cases}}\)

Tới đây bạn tự giải được rồi :)

Bình luận (0)
AW
2 tháng 9 2017 lúc 8:07

Câu hỏi của Thu Trần Thị - Toán lớp 9 - Học toán với OnlineMath

tham khảo nhé 

bn cần đoa

Bình luận (0)
HL
11 tháng 3 2020 lúc 16:29

                                       Bài giải

Bạn kham khảo câu hỏi này nha bạn ! Thu Trần Thị 

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NC
19 tháng 10 2015 lúc 23:17

ĐKXĐ: \(x>2;y>1\)

Khi đó Pt \(\Leftrightarrow\)\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

theo BĐT Cô si ta có \(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\ge2.\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}=24}\)

                                  và \(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=4\)

Pt đã cho có VT>= 28 Dấu "=" xảy ra \(\Leftrightarrow\)

\(\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\Leftrightarrow x=11\)

và \(\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\Leftrightarrow y=5\)

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

Bình luận (0)
NT
19 tháng 10 2015 lúc 23:13

Ê Thắng tưởng off dòi mờ...nhanh thế....

Bình luận (0)
HT
Xem chi tiết
PM
22 tháng 12 2015 lúc 19:58

Có \(4\left(\frac{9}{\sqrt{x-2}}+\sqrt{x-2}\right)\ge4.2\sqrt{\frac{9}{\sqrt{x-2}}\sqrt{x-2}}=24\)(Cô si)
\(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\frac{4}{\sqrt{y-1}}\sqrt{y-1}}=4\)
\(\Rightarrow\frac{4}{\sqrt{y-1}}+\sqrt{y-1}+4\left(\frac{9}{\sqrt{x-2}}+\sqrt{x-2}\right)\ge28\)
Dấu "=" xảy ra <=>\(\int^{9=x-2}_{4=y-1}\Leftrightarrow\int^{x=11}_{y=5}\)
 

Bình luận (0)
QN
Xem chi tiết