/\(x_1^2-x_2^2\) /=15
Gọi
x1,x2 là hai nghiệm của pt \(x^2-2x-1=0\) tính giá trị của các biểu thức:
A=\(x_1^2+x_2^2\)
B=\(x_1^3+x_2^3\)
C=\(x_1^4+x_2^4\)
D=\(x_1^2.x_2+x_2^2.x_1\)
E=\(\dfrac{x_1^2}{x_2}+\dfrac{x_2^2}{x_1}\)
F=\(\left|x_1-x_2\right|\)
G=\(\dfrac{x_1}{x_2+1}+\dfrac{x_2}{x_1+1}\)
H=\(\left(x_1+\dfrac{2}{x_2}\right)\left(x_2+\dfrac{2}{x_1}\right)\)
,có \(ac< 0\)=>pt đã cho luôn có 2 nghiệm phân biệt
vi ét \(=>\left\{{}\begin{matrix}x1+x2=2\\x1x2=-1\end{matrix}\right.\)
a,\(A=\left(x1+x2\right)^2-2x1x2=.....\) thay số tính
b,\(B=\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)=.......\)
c,\(C=x1^{2^2}+x2^{2^2}=\left(x1^2+x2^2\right)^2-2\left(x1x2\right)^2=\left[\left(x1+x2\right)^2-2x1x2\right]^2-2\left(x1x2\right)^2=....\)
\(D=x1x2\left(x1+x2\right)=.....\)
\(x1,x2\ne0=>E=\dfrac{\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)}{x1x2}=...\)
\(F=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}=....\)
\(x1,x2\ne-1=>G=\dfrac{\left(x1+x2\right)^2-2x1x2+x1x2}{x1x2+x1+X2+1}=...\)
\(x1,x2\ne0=>H=\left(\dfrac{x1x2+2}{x2}\right)\left(\dfrac{x1x2+2}{x1}\right)=\dfrac{\left(x1x2+2\right)^2}{x1x2}\)
\(=\dfrac{\left(x1x2\right)^2+4x1x2+4}{x1x2}=..\)
Cho phương trình \(x^2-7x+10=0\) ,không giải phương trình hãy tính:
A = \(x_1^2+x_2^2+3x_1x_2\)
B = \(\dfrac{1}{x_1}=\dfrac{1}{x_2}\)
C = \(\sqrt{x_1}=\sqrt{x_2}\)
D = \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\)
Ptrình : \(x^2-7x+10=0\)
Ta có : \(\Delta=\left(-7\right)^2-4.1.10=9>0\)
=> Phương trình có 2 nghiệm phân biệt \(x1\) và \(x2\)
\(x1=\dfrac{-\left(-7\right)+\sqrt{\Delta}}{2.1}=\dfrac{7+\sqrt{9}}{2}=5\)
\(x2=\dfrac{-\left(-7\right)-\sqrt{\Delta}}{2.1}=\dfrac{7-\sqrt{9}}{2}=2\)
Vậy :
A = \(x_1^2+x_2^2+3x_1x_2=5^2+2^2+3.5.2=59\)
B = .................
.... (có x1 và x2 rồi thik thay vào lak tính đc, cái này bn tự tính nha)
6 Gọi \(x_1,x_2\) là 2 nghiệm của pt \(x^2-x-3=0\) .Không giải pt hãy tính giá trị của các biểu thức sau:
a. A=\(x_1^2+x_2^2\)
b. B=\(x_1^2x_2+x_1x_2^2\)
c. C=\(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
d. D=\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{1}{1}=1\\x_1x_2=\dfrac{c}{a}=-\dfrac{3}{1}=-3\end{matrix}\right.\)
a
\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2=1^2-2.\left(-3\right)=1+6=7\)
b
\(B=x_1^2x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)=\left(-3\right).1=-3\)
c
\(C=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2}{x_1x_2}+\dfrac{x_1}{x_1x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{-3}=-\dfrac{1}{3}\)
d
\(D=\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=\dfrac{x_2^2}{x_1x_2}+\dfrac{x_1^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\dfrac{1^2-2.\left(-3\right)}{-3}=\dfrac{1+6}{-3}=\dfrac{7}{-3}=-\dfrac{3}{7}\)
`x^2 -(m+1)x+m=0`
tìm m để pt có 2 nghiệm `x_1 , x_2` thỏa mãn \(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)
\(\text{Δ}=\left[-\left(m+1\right)\right]^2-4\cdot1\cdot m\)
\(=\left(m+1\right)^2-4m\)
\(=\left(m-1\right)^2>=0\forall m\)
=>Phương trình luôn có hai nghiệm
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+1\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=x_1x_2-2\left(x_1+x_2\right)+6\)
=>\(\left(m+1\right)^2-2m=m-2\left(m+1\right)+6\)
=>\(m^2+1=m-2m-2+6\)
=>\(m^2+1=-m+4\)
=>\(m^2+m-3=0\)
=>\(m=\dfrac{-1\pm\sqrt{13}}{2}\)
Cho phương trình \(x^2-2x+m+2=0\) . Xác định m để phương trình có 2 nghiệm \(x_1,x_2\)thõa.
a) \(x_1^2+x_2^2=10\)
b) \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-10}{3}\)
c) \(x_2-x_1=2\)
d) \(x_1^2.x_2^2-\left(x_1^2+x_2^2\right)=2x_1x_2-5\)
Cho phương trình: x\(^2\) - 2(m-1)x + m - 3 = 0.
1, Chứng minh phương trình luôn có 2 nghiệm \(x_1\), \(x_2\) với mọi giá trị của m.
2, Tìm m để: \(\dfrac{x_1}{x_2}\) + \(\dfrac{x_2}{x_1}\) = \(x_1\).\(x_2\)
1: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-3\right)\)
\(=4m^2-8m+4-4m+12\)
\(=4m^2-12m+16\)
\(=\left(2m-3\right)^2+7>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
2: Theo vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m-3\end{matrix}\right.\)
Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=x_1x_2\)
\(\Leftrightarrow x_1^2+x_2^2=\left(m-3\right)^2\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(m-3\right)-\left(m-3\right)^2=0\)
\(\Leftrightarrow4m^2-16m+4-2m+6-m^2+6m-9=0\)
\(\Leftrightarrow3m^2-12m+1=0\)
\(\text{Δ}=\left(-12\right)^2-4\cdot3\cdot1=144-12=132>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{12-2\sqrt{33}}{6}=\dfrac{6-\sqrt{33}}{3}\\x_2=\dfrac{6+\sqrt{33}}{3}\end{matrix}\right.\)
`2x^2 -5x-1=0` có 2 nghiệm `x_1 , x_2`. Tính \(\dfrac{x_1}{x_1-1}+\dfrac{x_2}{x_2-1}-2022\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{5}{2}\\x_1x_2=\dfrac{c}{a}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\dfrac{x_1}{x_1-1}+\dfrac{x_2}{x_2-1}-2022\)
\(=\dfrac{x_1x_2-x_1+x_2x_1-x_2}{\left(x_1-1\right)\left(x_2-1\right)}-2022\)
\(=\dfrac{2\cdot x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}-2022\)
\(=\dfrac{2\cdot\dfrac{-1}{2}-\dfrac{5}{2}}{-\dfrac{1}{2}-\dfrac{-5}{2}+1}-2022\)
\(=\dfrac{-\dfrac{7}{2}}{-\dfrac{1}{2}+\dfrac{5}{2}+1}-2022=\dfrac{-7}{6}-2022=-\dfrac{12139}{6}\)
cho \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=m-2\end{cases}}\)
tìm M để \(\frac{x_1^2-2}{x_1+1}.\frac{x_2^2-2}{x_2+1}=4\)
\(\frac{x_1^2-2}{x_1+1}.\frac{x_2^2-2}{x_2+1}=4\)
\(\frac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1+x\right)\left(x_2+1\right)}=4\)
\(\frac{\left(x_1.x_2\right)^2-2x_1^2-2x_2^2+4}{x_1.x_2+x_1+x_2+1}=4\)
\(\frac{\left(x_1.x_2\right)^2-2\left(x^2_1+x_2^2\right)+4}{x_1.x_2+\left(x_1+x_2\right)+1}=4\)
\(\frac{\left(m-2\right)^2-2.\left[\left(x_1+x_2\right)-2x_1x_2\right]+4}{m-2+\left(-m\right)+1}=4\)
\(\frac{m^2-4m+4-2.\left[m^2-2\left(m-2\right)\right]+4}{-1}=4\)
\(\Leftrightarrow m^2-4m+4-2\left(m^2-2m+4\right)+4=-4\)
\(\Leftrightarrow m^2-4m+4-2m^2+4m-8+4+4=0\)
\(\Leftrightarrow-m^2+4=0\)
\(\Leftrightarrow m^2-4=0\)
\(\Leftrightarrow m^2=4\)
\(\Leftrightarrow m=\pm2\)
vậy \(m=\pm2\) là các giá trị cần tìm
Cho phương trình $3x^2-7x+4=0$, Không giải, hãy tính:
a, $x_1^2+x_2^2$
b, $|x_1-x_2|$
c,$\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}$
** Bạn lưu ý lần sau viết đề bằng công thức toán để được hỗ trợ tốt hơn!
Lời giải:
$\Delta=49-48=1>0$ nên pt luôn có 2 nghiệm $x_1,x_2$ phân biệt.
Áp dụng định lý Viet: $x_1+x_2=\frac{7}{3}$ và $x_1x_2=\frac{4}{3}$
a)
$x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=(\frac{7}{3})^2-2.\frac{4}{3}=\frac{25}{9}$
b)
$|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}$
$=\sqrt{(\frac{7}{3})^2-4.\frac{4}{3}}=\frac{1}{3}$
c)
$\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}=\frac{x_1^3+x_2^3}{x_1x_2}$
$=\frac{(x_1+x_2)^3-3x_1x_2(x_1+x_2)}{x_1x_2}$
$=\frac{(\frac{7}{3})^3-3.\frac{7}{3}.\frac{4}{3}}{\frac{4}{3}}=\frac{91}{36}$