Những câu hỏi liên quan
HK
Xem chi tiết
NN
17 tháng 9 2017 lúc 13:46

\(A=x^2-4xy+7y^2+10x-24y+30\\ =\left(x^2-4xy+4y^2\right)+10\left(x-y\right)+25+\left(3y^2-14y+\dfrac{49}{3}\right)-\dfrac{34}{3}\\ =\left(x-2y+5\right)^2+3\left(y-\dfrac{7}{3}\right)^2-\dfrac{34}{5}\)

Với mọi x;y thì \(\left(x-2y+5\right)^2\ge0;3\left(y-\dfrac{7}{3}\right)^2\ge0\)

Do đó:\(A\ge-\dfrac{34}{5}\)

Để \(A=-\dfrac{34}{5}\) thì:

\(\left[{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-\dfrac{7}{3}\right)^2=0\\\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2y=-5\\y=\dfrac{7}{3}\\\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5+\dfrac{2.7}{3}=-\dfrac{1}{3}\\y=\dfrac{7}{3}\\\end{matrix}\right.\)

Vậy...

Bình luận (1)
HK
17 tháng 9 2017 lúc 11:45

Nguyễn Thị Hồng Nhung, Akai Haruma, Trần Hoàng Nghĩa, Trần Thiên Kim, Phạm Hoàng Giang, Nhật Hạ, DƯƠNG PHAN KHÁNH DƯƠNG, Toshiro Kiyoshi, Ribi Nkok Ngok, ...

Bình luận (0)
HK
17 tháng 9 2017 lúc 12:37

Các pạn ơi, giúp mk vs!!! Toshiro Kiyoshi, Trần Hoàng Nghĩa, Nguyễn Thị Hồng Nhung, ...

Bình luận (0)
NK
Xem chi tiết
TC
13 tháng 11 2021 lúc 17:57

a)

Ta có:

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)

\(\ge0-2=-2\)

Vậy \(A_{min}=-2\), đạt được khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

b)\(B=4x^2+4x+8=4x^2+4x+1+7\)

\(=\left(2x+1\right)^2+7\ge0+7=7\)

Vậy \(B_{min}=7\), đạt được khi và chỉ khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)

Bình luận (0)
TC
13 tháng 11 2021 lúc 18:10

c)

Ta có:

\(C=3x-x^2+2=2-\left(x^2-3x\right)\)

\(=2+\dfrac{9}{4}-\left(x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}\right)\)

\(=\dfrac{17}{4}-\left(x-\dfrac{3}{2}\right)^2\le\dfrac{17}{4}-0=\dfrac{17}{4}\)

Vậy \(C_{max}=\dfrac{17}{4}\), đạt được khi và chỉ khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

d) Ta có:

\(D=-x^2-5x=-\left(x^2+5x\right)=\dfrac{25}{4}-\left(x^2+2x.\dfrac{5}{2}+\dfrac{25}{4}\right)\)

\(=\dfrac{25}{4}-\left(x+\dfrac{5}{2}\right)^2\le\dfrac{25}{4}-0=\dfrac{25}{4}\)

Vậy \(D_{max}=\dfrac{25}{4}\), đạt được khi và chỉ khi \(x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\)

e) Ta có:

\(E=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2+4y^2+5^2-4xy+10x-20y+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

\(\ge0+0+2=2\)

Vậy \(E_{min}=2\), đạt được khi và chỉ khi \(x-2y+5=y-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
AH
28 tháng 8 2021 lúc 10:29

a.

$64x^3-16x^2+x=x(64x^2-16x+1)$

$=x(8x-1)^2$

b.

$36-4xy+24y-x^2=(4y^2+24y+36)-(x^2+4xy+4y^2)$

$=(2y+6)^2-(x+2y)^2=(2y+6-x-2y)(2y+6+x+2y)$

$=(6-x)(x+4y+6)$

c.

$x^2+10x-2010.2020$

$=x^2+10x-(2015-5)(2015+5)

$=x^2+10x-(2015^2-5^2)$

$=(x^2+10x+5^2)-2015^2=(x+5)^2-2015^2$

$=(x+5-2015)(x+5+2015)=(x-2010)(x+2020)$

Bình luận (0)
AH
28 tháng 8 2021 lúc 10:30

d.

$25x^2-121+22y-y^2$

$=(5x)^2-(y^2-22y+11^2)$

$=(5x)^2-(y-11)^2=(5x-y+11)(5x+y-11)$

e.

$(x^2+2x)(x^2+2x-2)-3$

$=(x^2+2x)^2-2(x^2+2x)-3$

$=(x^2+2x)^2+(x^2+2x)-3(x^2+2x)-3$

$=(x^2+2x)(x^2+2x+1)-3(x^2+2x+1)$

$=(x^2+2x+1)(x^2+2x-3)$

$=(x+1)^2[x(x-1)+3(x-1)]$

$=(x+1)(x-1)(x+3)$

Bình luận (0)
NT
28 tháng 8 2021 lúc 15:08

a: \(64x^3-16x^2+x\)

\(=x\left(64x^2-16x+1\right)\)

\(=x\left(8x-1\right)^2\)

b: \(36-4xy+24y-x^2\)

\(=-\left(x-6\right)\left(x+6\right)-4y\left(x-6\right)\)

\(=\left(x-6\right)\left(-x-6-4y\right)\)

c: \(x^2+10x-2010\cdot2020\)

\(=x^2+2020x-2010x-2010\cdot2020\)

\(=x\left(x+2020\right)-2010\left(x+2020\right)\)

\(=\left(x+2020\right)\left(x-2010\right)\)

Bình luận (0)
NT
Xem chi tiết
HP
11 tháng 7 2016 lúc 11:14

Đặt \(A=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2-4xy+10x+5y^2-22y+28\)

\(=x^2-x\left(4y-10\right)+5y^2-22y+28\)

\(=x^2-2.x.\frac{4y-10}{2}+\left(\frac{4y-10}{2}\right)^2+5y^2-22y-\left(\frac{4y-10}{2}\right)^2+28\)

\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-\frac{16y^2-80y+100}{4}+28\)

\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-4y^2+20y-25+28\)

\(=\left(x-\frac{4y-10}{2}\right)^2+y^2-2y+3=\left(x-\frac{4y-10}{2}\right)^2+y^2-2.y.1+1^2+2\)

\(=\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\)

\(\left(x-\frac{4y-10}{2}\right)^2\ge0;\left(y-1\right)^2\ge0=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2\ge0\)

\(=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\ge2\) (với mọi x,y)

Dấu "=" xảy ra \(< =>\hept{\begin{cases}\left(x-\frac{4y-10}{2}\right)^2=0\\\left(y-1\right)^2=0\end{cases}}< =>\hept{\begin{cases}x-\frac{4y-10}{2}=0\\y=1\end{cases}}< =>\hept{\begin{cases}x-\frac{4-10}{2}=0\\y=1\end{cases}}\)

\(< =>\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy MInA=2 khi x=-3;y=1


 

Bình luận (0)
NT
11 tháng 7 2016 lúc 16:23

Amin=2

Bình luận (0)
MN
Xem chi tiết
PQ
Xem chi tiết
NA
Xem chi tiết
DH
6 tháng 8 2017 lúc 21:00

\(A=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(A_{min}=2\) tại \(x=-3;y=1\)

Bình luận (0)
NH
Xem chi tiết
PN
19 tháng 12 2020 lúc 20:24

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

Bình luận (0)
PN
19 tháng 12 2020 lúc 20:26

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

Bình luận (0)
LD
Xem chi tiết
LL
4 tháng 10 2021 lúc 22:58

a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)

\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)

\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)

c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)

\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)

d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)

e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)

f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)

\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Bình luận (1)
NT
4 tháng 10 2021 lúc 22:55

a: Ta có: \(4x^2+12x+1\)

\(=4x^2+12x+9-8\)

\(=\left(2x+3\right)^2-8\ge-8\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

b: Ta có: \(4x^2-3x+10\)

\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)

\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)

\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)

c: Ta có: \(2x^2+5x+10\)

\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)

\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)

\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)

Bình luận (1)