Những câu hỏi liên quan
NL
Xem chi tiết
TM
Xem chi tiết
TT
Xem chi tiết
TL
22 tháng 8 2015 lúc 23:03

+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3

=> A chia cho 4 dư 3

Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương

+) Xét n lẻ : n = 2k + 1

A = 2n .(n+ n + 1) + 7 = 2(2k +1).(4k+ 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7

= 16k3 + 24k2 + 12k + 8k2 + 12k + 6  + 7 

= 16k3 + 32k2 + 24k + 13 

13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5

Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)

=> Không có số n lẻ nào để A là số chính phương

Vậy Không tồn tại số nguyên n để A là số chính phương

Bình luận (0)
PD
21 tháng 11 2017 lúc 23:00

+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3

=> A chia cho 4 dư 3

Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương

+) Xét n lẻ : n = 2k + 1

A = 2n .(n+ n + 1) + 7 = 2(2k +1).(4k+ 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7

= 16k3 + 24k2 + 12k + 8k2 + 12k + 6  + 7 

= 16k3 + 32k2 + 24k + 13 

13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5

Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)

=> Không có số n lẻ nào để A là số chính phương

Vậy Không tồn tại số nguyên n để A là số chính phương

Bình luận (0)
MS
18 tháng 4 2018 lúc 21:08

Vậy ko tồn tại số nguyên n để A là số chính phương

Kb nha

Dung 100 %

Bình luận (0)
SG
Xem chi tiết
HN
Xem chi tiết
TB
Xem chi tiết
NN
Xem chi tiết
GH
Xem chi tiết
NL
5 tháng 1 2024 lúc 22:54

- Với \(n=0\) không thỏa mãn

- Với \(n=1\) không thỏa mãn

- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)

- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5

Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP 

Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu

Bình luận (0)
NL
Xem chi tiết
VH
7 tháng 10 2017 lúc 19:04

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

Bình luận (2)
TV
22 tháng 1 2023 lúc 9:39

Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)

<=> 9=m2-n2

<=> 9=(m-n)(m+n)

Vì n thuộc N => m-n thuộc Z, m+n thuộc N

=> m-n,m+n thuộc Ư(9)

mà m+n>m-n

nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)

 Vậy A là SCP <=>n=4

Bình luận (0)
TA
Xem chi tiết