Những câu hỏi liên quan
TB
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
ST
4 tháng 11 2018 lúc 10:10

Sửa đề cho x/y-z + y/z-x + z/x-y =0,tính Q=x/(y-z)^2 + y/(z-x)^2 + z/(x-y)^2

Ta có: \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\Rightarrow\frac{x}{y-z}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right)\)

\(\Rightarrow\frac{x}{y-z}=\frac{y}{x-z}+\frac{z}{y-x}=\frac{y^2-xy+xz-z^2}{\left(x-y\right)\left(z-x\right)}\)

\(\Rightarrow\frac{x}{\left(y-z\right)^2}=\frac{y^2-xy+xz-z^2}{\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

Tương tự ta có: \(\frac{y}{\left(z-x\right)^2}=\frac{z^2-yz+yx-x^2}{\left(y-z\right)\left(z-x\right)\left(x-y\right)};\frac{z}{\left(x-y\right)^2}=\frac{x^2-zx+zy-y^2}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\)

Cộng ba đẳng thức trên vế theo vế, ta được:

\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=\frac{y^2-xy+xz-z^2+z^2-yz+yx-x^2+x^2-zx+zy-y^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)

Vậy Q = 0

Bình luận (0)
BR
Xem chi tiết
MA
6 tháng 7 2023 lúc 15:04

Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)

Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)

\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)

\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\)

\(=3\)

Vậy P=3

Bình luận (0)
NN
Xem chi tiết
NT
13 tháng 11 2019 lúc 22:22

Cậu vào phần thống kê câu trả lời của mk ấy, ngay câu đầu tiên 

Bình luận (0)
 Khách vãng lai đã xóa
H24
13 tháng 11 2019 lúc 22:23

tham khảo nha: Câu hỏi của Nguyễn Thị Phương Thảo - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
EC
13 tháng 11 2019 lúc 23:02

Ta có: x + y + z = 0 

=> x = -y - z

=> x2 = (-y - z)2

=> x2 = y2 + 2yz + z2

=> x2 - y2 - z2 = 2yz

CMTT: y2 = x2 + 2xz + z2 => y2 - z2 - x2 = 2xz

          z2 = x2 + 2xy + y2 => z2 - x2 - y2 = 2xy

Khi đó, ta có:M = \(\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}\)

M = \(\frac{x^3+y^3+z^3}{2xyz}\)

M = \(\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+z^3}{2xyz}\)

M = \(\frac{\left(x+y\right)\left(x^2+2xy+y^2\right)-3xy\left(x+y\right)+z^3}{2xyz}\)

M = \(\frac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

M = \(\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+x^2\right]-3xy\left(x+y\right)}{2xyz}\)(do x + y + z = 0)

M = \(\frac{-3xy.z}{2xyz}=-\frac{3}{2}\) (do x + y = -z)

Bình luận (0)
 Khách vãng lai đã xóa
EC
13 tháng 11 2019 lúc 23:09

Sửa lại kq M = 3/2 (thay dòng cuối) (-3xy.z --> -3xy(-z)) n/b

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TH
19 tháng 1 2021 lúc 19:03

Đẳng thức đã cho tương đương với:

\(\dfrac{x^2z+y^2z-z^3+y^2x+z^2x-x^3+z^2y+x^2y-y^3}{2yxz}=1\)

\(\Leftrightarrow x^3+y^3+z^3+2xyz-x^2y-y^2z-z^2x-xy^2-yz^2-zx^2=0\)

\(\Leftrightarrow\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)=0\Leftrightarrow z+x=y\) (Do x + y khác z và y + z khác x).

Từ đó P = 2y (Biểu thức của P phụ thuộc vào biến y).

Bình luận (0)
H24
19 tháng 1 2021 lúc 19:30

Vậy từ giả thiết đó bạn có thể CMR P=0 đc k

Giúp mk ba mk đg cần gấp

Bình luận (0)
NT
Xem chi tiết
NC
30 tháng 11 2018 lúc 8:54

Câu hỏi của Hoàng Liên - Toán lớp 9 - Học toán với OnlineMath Em tham khảo tại link này nhé !

Bình luận (0)
H24
Xem chi tiết
NM
5 tháng 12 2021 lúc 15:23

\(x^2+y^2-z^2=x^2+\left(y-z\right)\left(y+z\right)=x^2-x\left(y-z\right)=x\left(x-y+z\right)=x\left(-y-y\right)=-2xy\)

Tương tự \(x^2+z^2-y^2=-2xz;y^2+z^2-x^2=-2yz\)

Cộng VTV:

\(\Leftrightarrow\text{Biểu thức }=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}=-\dfrac{1}{8}\)

Bình luận (0)