Tìm x, y, z biết a) x/2 = y/3 = z/4 và x - z = 22
Tìm x,y và z ( nếu có) biết:
x/y =2/5;y/z=5/3 và 2x - y + 3z = 16
x/5=y/3 ; y/5=z/4 và x - y + z = 22
\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)
\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`
`-> x/2=y/5=z/3=2`
`-> x=2*2=4, y=2*5=10, z=2*3=6`
`x/5=y/3 -> x/25=y/15`
`y/5=z/4 -> y/15=z/12`
`x/25=y/15, y/15=z/12`
`-> x/25=y/15=z/12`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`
`-> x/25=y/15=z/12=1`
`-> x=25, y=15, z=12`
a: x/y=2/5
=>x/2=y/5
y/z=5/3
=>y/5=z/3
=>x/2=y/5=z/3
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)
=>x=4; y=10; z=6
b: x/5=y/3
=>x/25=y/15
y/5=z/4
=>y/15=z/12
=>x/25=y/15=z/12
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)
=>x=25; y=15; z=12
Để giải hệ phương trình này, ta sẽ sử dụng phương pháp thay thế.
Trước hết, ta sẽ giải hai phương trình đầu tiên để tìm x, y, và z.
Từ \( \frac{x}{3} = \frac{y}{5} \), ta có thể suy ra:
\[ x = \frac{3y}{5} \]
Từ \( \frac{y}{2} = \frac{z}{4} \), ta có thể suy ra:
\[ y = \frac{2z}{4} = \frac{z}{2} \]
Bây giờ, ta có thể thay vào phương trình cuối cùng để tìm giá trị của x, y, và z.
Thay x và y vào phương trình:
\[ -2(\frac{3y}{5}) + y - z = -22 \]
\[ -\frac{6y}{5} + y - z = -22 \]
\[ y - \frac{6y}{5} - z = -22 \]
\[ \frac{5y - 6y}{5} - z = -22 \]
\[ -\frac{y}{5} - z = -22 \]
\[ -\frac{y}{5} = -22 + z \]
\[ y = 5(22 - z) \]
Thay y vào phương trình \( x = \frac{3y}{5} \), ta có:
\[ x = \frac{3(5(22 - z))}{5} \]
\[ x = 3(22 - z) \]
Thay y vào phương trình \( y = \frac{z}{2} \), ta có:
\[ z = 2y \]
Bây giờ, ta sẽ thay x, y, và z vào phương trình cuối cùng để tìm giá trị của z:
\[ -2x + y - z = -22 \]
\[ -2(3(22 - z)) + 5(22 - z) - z = -22 \]
\[ -2(66 - 2z) + 110 - 5z - z = -22 \]
\[ -132 + 4z + 110 - 6z = -22 \]
\[ -22 - 2z = -22 \]
\[ -2z = 0 \]
\[ z = 0 \]
Khi biết z = 0, ta có thể tìm giá trị của x và y:
\[ x = 3(22 - 0) = 66 \]
\[ y = 5(22 - 0) = 110 \]
Vậy, giải hệ phương trình ta được:
\[ x = 66, y = 110, z = 0 \]
Tìm số x, y, z biết x/3=y/5;y/2=z/4 và -2x+y-z=-22
Bài làm:
Ta có: \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(1)
Và \(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\) (2)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{10}=\frac{-2x+y-z}{-6+5-10}=\frac{-22}{-11}=2\)
=> \(\hept{\begin{cases}x=6\\y=10\\z=20\end{cases}}\)
Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(*)
\(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\)(**)
Từ (*) ; (**) ta có : \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}=\frac{-2x+y-z}{-2.6+10-20}=-\frac{22}{-22}=1\)
: \(x=6;y=10;z=20\)
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
cũng dễ thôi
Tìm x, y, z biết:
x+1/3 = y+2/2 = z+3/1 và x-y+z=22
Tìm x,y,z biết :
1) -5/2x+1=-3/x-2
2 ) x/-2=y/-3 và x.y=54
3) |2/5.√x-1/3|-2/5=3/5
4) 3x=2y, 7y=5z và x-y+z=32
5) x/5=y/3 và x^2-y^2=4
5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
nên x=5k; y=3k
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow25k^2-9k^2=4\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)
Để giải từng phương trình:
1) \( -\frac{5}{2}x + 1 = -\frac{3}{x} - 2 \)
Đưa về cùng một cơ sở:
\[ -5x + 2 = -6 - 2x \]
\[ -5x + 2x = -6 - 2 \]
\[ -3x = -8 \]
\[ x = \frac{8}{3} \]
2) \( \frac{x}{-2} = \frac{y}{-3} \) và \( x \cdot y = 54 \)
Từ phương trình thứ nhất:
\[ x = -\frac{2y}{3} \]
Thay vào phương trình thứ hai:
\[ (-\frac{2y}{3}) \cdot y = 54 \]
\[ -\frac{2y^2}{3} = 54 \]
\[ y^2 = -\frac{81}{2} \]
Phương trình không có nghiệm thực vì \( y^2 \) không thể là số âm.
3) \( | \frac{2}{5} \cdot \sqrt{x} - \frac{1}{3} | - \frac{2}{5} = \frac{3}{5} \)
Đưa \( \frac{2}{5} \) về chung mẫu số với \( \frac{1}{3} \):
\[ | \frac{6\sqrt{x}}{15} - \frac{5}{15} | = \frac{3}{5} + \frac{2}{5} \]
\[ | \frac{6\sqrt{x} - 5}{15} | = \frac{5}{5} \]
\[ |6\sqrt{x} - 5| = 3 \]
Giải phương trình trên:
\[ 6\sqrt{x} - 5 = 3 \] hoặc \( 6\sqrt{x} - 5 = -3 \)
\[ 6\sqrt{x} = 8 \] hoặc \( 6\sqrt{x} = 2 \)
\[ \sqrt{x} = \frac{4}{3} \] hoặc \( \sqrt{x} = \frac{1}{3} \)
\[ x = \frac{16}{9} \] hoặc \( x = \frac{1}{9} \)
4) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)
Từ phương trình 1:
\[ x = \frac{2}{3}y \]
Từ phương trình 2:
\[ z = \frac{7}{5}y \]
Thay vào phương trình 3:
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]
\[ \frac{2}{3}y - \frac{3}{3}y + \frac{7}{5}y = 32 \]
\[ (\frac{2}{3} - 1 + \frac{7}{5})y = 32 \]
\[ (\frac{10}{15} - \frac{15}{15} + \frac{21}{15})y = 32 \]
\[ (\frac{10 - 15 + 21}{15})y = 32 \]
\[ (\frac{16}{15})y = 32 \]
\[ y = 20 \]
Thay vào phương trình 1 và 2:
\[ x = \frac{2}{3} \cdot 20 = \frac{40}{3} \]
\[ z = \frac{7}{5} \cdot 20 = 28 \]
5) \( \frac{x}{5} = \frac{y}{3} \) và \( x^2 - y^2 = 4 \)
Từ phương trình 1:
\[ x = \frac{5}{3}y \]
Thay vào phương trình 2:
\[ (\frac{5}{3}y)^2 - y^2 = 4 \]
\[ \frac{25}{9}y^2 - y^2 = 4 \]
\[ (\frac{25}{9} - 1)y^2 = 4 \]
\[ (\frac{25 - 9}{9})y^2 = 4 \]
\[ (\frac{16}{9})y^2 = 4 \]
\[ y^2 = \frac{9}{4} \]
\[ y = \frac{3}{2} \]
Thay vào phương trình 1:
\[ x = \frac{5}{3} \cdot \frac{3}{2} = \frac{5}{2} \]
Vậy, giải hệ phương trình ta được:
1) \( x = \frac{8}{3} \)
2) Phương trình không có nghiệm thực.
3) \( x = \frac{16}{9} \) hoặc \( x = \frac{1}{9} \)
4) \( x = \frac{40}{3} \), \( y = 20 \), \( z = 28 \)
5) \( x = \frac{5}{2} \), \( y = \frac{3}{2} \)
Tìm x,y,z biết
a, x/2=y/3=z/4 và x+z=18
b, x/5=y/-6=z/7 và y-x=39
c, x/2=y/3=z/-4 và 3x-2y
d, x/0,3=y/0,7=z và z-3
e, x+1/2=y+2/3=z+3/4 và x+y+z=21
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
a) Tìm ba số a,b,c biết a:b:c=2:4:5 và a+b+c=22
b) Tìm x,y,z biết x:3=y:5 ; z:7=y:3 và x-y=(-12)
Mọi người giúp Lù nha.
a, Ta có : \(a:b:c=2:4:5 \)và \(a+b+c=22\)
\(\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\)
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)
\(\Rightarrow\frac{a}{2}=2\Leftrightarrow a=2.2=4\)
\(\frac{b}{4}=2\Leftrightarrow b=2.4=8\)
\(\frac{c}{5}=2\Leftrightarrow c=2.5=10\)
Vậy a = 4 ; b = 8 ; c = 10
tìm x y z biết:
a) 3x = 7y và x - 2y = 2
b) x/2 = y/3 x/3 = z/4 và x + y - z = 7
c) x/2 = y/3 y/5 = z/4 và 2x - y + z = 17
Làm nhanh dùm mình ạ!
a) 3x = 7y ⇒ x/7 = y/3
⇒ x/7 = 2y/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2
x/7 = 2 ⇒ x = 2.7 = 14
y/3 = 2 ⇒ y = 2.3 = 6
Vậy x = 14; y = 6
b) x/2 = y/3 ⇒ x/6 = y/9 (1)
x/3 = z/4 ⇒ x/6 = z/8 (2)
Từ (1) và (2) ⇒ x/6 = y/9 = z/8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1
x/6 = 1 ⇒ x = 1.6 = 6
y/9 = 1 ⇒ y = 1.9 = 9
z/8 = 1 ⇒ z = 1.8 = 8
Vậy x = 6; y = 9; z = 8
c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)
y/5 = z/4 ⇒ y/15 = z/12 (4)
Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1
2x/20 = 1 ⇒ x = 1.20 : 2 = 10
y/15 = 1 ⇒ y = 1.15 = 15
z/12 = 1 ⇒ z = 1.12 = 12
Vậy x = 10; y = 15; z = 12
a)x/2=y/3=z/6 và 3x-2y+27=24
b)x/2=y/3=z/4 và x + z =18
c)x/2=y/3=z/-4 và 3x-22=28
d) x+1/3=y+2/4=z+3/5 và x+y+z= 18
Các phần còn lại check lại đề bài.
b) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\Rightarrow x=6\\\frac{y}{3}=3\Rightarrow y=9\\\frac{z}{4}=3\Rightarrow z=12\end{cases}}\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x+1=6\\y+2=8\\z+3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=6\\z=7\end{cases}}\)
Bài 1:Tìm x biết:
1) (x-3)/7=y-5/5=z+7/3 và x+y+z=43
2) x+11/3=y+2/2=z+3/4 và x-y+z=2x
3) x-1/3=y-2/4=z+7/5 và x+y-z=8
4) x+1/2=y+3/4=z+5/6 và 2x+3y+4z=9
Bài 2: Cho a+b/a-b = c+a/c-a Chứng Minh
a^2= b.c
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
a) x=949/27
y=755/27
z=61/9
các bạn xem giúp mik đúng chx ạ, mik đặt là k