Những câu hỏi liên quan
LN
Xem chi tiết
KR
17 tháng 4 2023 lúc 20:10

\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)

\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`

`-> x/2=y/5=z/3=2`

`-> x=2*2=4, y=2*5=10, z=2*3=6`

 

`x/5=y/3 -> x/25=y/15`

`y/5=z/4 -> y/15=z/12`

`x/25=y/15, y/15=z/12`

`-> x/25=y/15=z/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`

`-> x/25=y/15=z/12=1`

`-> x=25, y=15, z=12`

 

Bình luận (0)
NT
17 tháng 4 2023 lúc 20:03

a: x/y=2/5

=>x/2=y/5

y/z=5/3

=>y/5=z/3

=>x/2=y/5=z/3

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)

=>x=4; y=10; z=6

b: x/5=y/3

=>x/25=y/15

y/5=z/4

=>y/15=z/12

=>x/25=y/15=z/12

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)

=>x=25; y=15; z=12

Bình luận (0)
74
25 tháng 4 lúc 13:27

Để giải hệ phương trình này, ta sẽ sử dụng phương pháp thay thế. 

Trước hết, ta sẽ giải hai phương trình đầu tiên để tìm x, y, và z.

Từ \( \frac{x}{3} = \frac{y}{5} \), ta có thể suy ra: 
\[ x = \frac{3y}{5} \]

Từ \( \frac{y}{2} = \frac{z}{4} \), ta có thể suy ra:
\[ y = \frac{2z}{4} = \frac{z}{2} \]

Bây giờ, ta có thể thay vào phương trình cuối cùng để tìm giá trị của x, y, và z.

Thay x và y vào phương trình:
\[ -2(\frac{3y}{5}) + y - z = -22 \]
\[ -\frac{6y}{5} + y - z = -22 \]
\[ y - \frac{6y}{5} - z = -22 \]
\[ \frac{5y - 6y}{5} - z = -22 \]
\[ -\frac{y}{5} - z = -22 \]
\[ -\frac{y}{5} = -22 + z \]
\[ y = 5(22 - z) \]

Thay y vào phương trình \( x = \frac{3y}{5} \), ta có:
\[ x = \frac{3(5(22 - z))}{5} \]
\[ x = 3(22 - z) \]

Thay y vào phương trình \( y = \frac{z}{2} \), ta có:
\[ z = 2y \]

Bây giờ, ta sẽ thay x, y, và z vào phương trình cuối cùng để tìm giá trị của z:
\[ -2x + y - z = -22 \]
\[ -2(3(22 - z)) + 5(22 - z) - z = -22 \]
\[ -2(66 - 2z) + 110 - 5z - z = -22 \]
\[ -132 + 4z + 110 - 6z = -22 \]
\[ -22 - 2z = -22 \]
\[ -2z = 0 \]
\[ z = 0 \]

Khi biết z = 0, ta có thể tìm giá trị của x và y:
\[ x = 3(22 - 0) = 66 \]
\[ y = 5(22 - 0) = 110 \]

Vậy, giải hệ phương trình ta được:
\[ x = 66, y = 110, z = 0 \]

 

Bình luận (0)
NH
Xem chi tiết
NL
29 tháng 8 2020 lúc 15:21

Bài làm:

Ta có: \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(1)

Và \(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\) (2)

Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{10}=\frac{-2x+y-z}{-6+5-10}=\frac{-22}{-11}=2\)

=> \(\hept{\begin{cases}x=6\\y=10\\z=20\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
29 tháng 8 2020 lúc 15:22

Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(*)

\(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\)(**)

Từ (*) ; (**) ta có : \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}=\frac{-2x+y-z}{-2.6+10-20}=-\frac{22}{-22}=1\)

\(x=6;y=10;z=20\)

Bình luận (0)
 Khách vãng lai đã xóa
PC
Xem chi tiết
NT
10 tháng 2 2016 lúc 10:12

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

Bình luận (0)
NN
24 tháng 3 2021 lúc 21:10

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

Bình luận (0)
 Khách vãng lai đã xóa
TN
28 tháng 3 2021 lúc 21:52

cũng dễ thôi

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
HS
Xem chi tiết
NT
10 tháng 8 2021 lúc 13:53

5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

nên x=5k; y=3k

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow25k^2-9k^2=4\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)

Bình luận (1)
74
25 tháng 4 lúc 13:38

Để giải từng phương trình:

1) \( -\frac{5}{2}x + 1 = -\frac{3}{x} - 2 \)

Đưa về cùng một cơ sở:
\[ -5x + 2 = -6 - 2x \]

\[ -5x + 2x = -6 - 2 \]

\[ -3x = -8 \]

\[ x = \frac{8}{3} \]

2) \( \frac{x}{-2} = \frac{y}{-3} \) và \( x \cdot y = 54 \)

Từ phương trình thứ nhất:
\[ x = -\frac{2y}{3} \]

Thay vào phương trình thứ hai:
\[ (-\frac{2y}{3}) \cdot y = 54 \]

\[ -\frac{2y^2}{3} = 54 \]

\[ y^2 = -\frac{81}{2} \]

Phương trình không có nghiệm thực vì \( y^2 \) không thể là số âm.

3) \( | \frac{2}{5} \cdot \sqrt{x} - \frac{1}{3} | - \frac{2}{5} = \frac{3}{5} \)

Đưa \( \frac{2}{5} \) về chung mẫu số với \( \frac{1}{3} \):
\[ | \frac{6\sqrt{x}}{15} - \frac{5}{15} | = \frac{3}{5} + \frac{2}{5} \]

\[ | \frac{6\sqrt{x} - 5}{15} | = \frac{5}{5} \]

\[ |6\sqrt{x} - 5| = 3 \]

Giải phương trình trên:
\[ 6\sqrt{x} - 5 = 3 \] hoặc \( 6\sqrt{x} - 5 = -3 \)

\[ 6\sqrt{x} = 8 \] hoặc \( 6\sqrt{x} = 2 \)

\[ \sqrt{x} = \frac{4}{3} \] hoặc \( \sqrt{x} = \frac{1}{3} \)

\[ x = \frac{16}{9} \] hoặc \( x = \frac{1}{9} \)

4) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)

Từ phương trình 1:
\[ x = \frac{2}{3}y \]

Từ phương trình 2:
\[ z = \frac{7}{5}y \]

Thay vào phương trình 3:
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]

\[ \frac{2}{3}y - \frac{3}{3}y + \frac{7}{5}y = 32 \]

\[ (\frac{2}{3} - 1 + \frac{7}{5})y = 32 \]

\[ (\frac{10}{15} - \frac{15}{15} + \frac{21}{15})y = 32 \]

\[ (\frac{10 - 15 + 21}{15})y = 32 \]

\[ (\frac{16}{15})y = 32 \]

\[ y = 20 \]

Thay vào phương trình 1 và 2:
\[ x = \frac{2}{3} \cdot 20 = \frac{40}{3} \]

\[ z = \frac{7}{5} \cdot 20 = 28 \]

5) \( \frac{x}{5} = \frac{y}{3} \) và \( x^2 - y^2 = 4 \)

Từ phương trình 1:
\[ x = \frac{5}{3}y \]

Thay vào phương trình 2:
\[ (\frac{5}{3}y)^2 - y^2 = 4 \]

\[ \frac{25}{9}y^2 - y^2 = 4 \]

\[ (\frac{25}{9} - 1)y^2 = 4 \]

\[ (\frac{25 - 9}{9})y^2 = 4 \]

\[ (\frac{16}{9})y^2 = 4 \]

\[ y^2 = \frac{9}{4} \]

\[ y = \frac{3}{2} \]

Thay vào phương trình 1:
\[ x = \frac{5}{3} \cdot \frac{3}{2} = \frac{5}{2} \]

Vậy, giải hệ phương trình ta được:
1) \( x = \frac{8}{3} \)
2) Phương trình không có nghiệm thực.
3) \( x = \frac{16}{9} \) hoặc \( x = \frac{1}{9} \)
4) \( x = \frac{40}{3} \), \( y = 20 \), \( z = 28 \)
5) \( x = \frac{5}{2} \), \( y = \frac{3}{2} \)

Bình luận (0)
BR
Xem chi tiết
GW
16 tháng 10 2021 lúc 12:36

a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)

Áp dụng t/c dãy tỏ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
GW
16 tháng 10 2021 lúc 12:39

b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
ML
Xem chi tiết
H24
23 tháng 10 2017 lúc 18:39

(a)         a=4    b=8     c=10

(b)           

Bình luận (0)
PD
23 tháng 10 2017 lúc 18:42

a, Ta có : \(a:b:c=2:4:5 \)và \(a+b+c=22\)

\(\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\)

Theo tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)

\(\Rightarrow\frac{a}{2}=2\Leftrightarrow a=2.2=4\)

\(\frac{b}{4}=2\Leftrightarrow b=2.4=8\)

\(\frac{c}{5}=2\Leftrightarrow c=2.5=10\)

Vậy a = 4 ; b = 8 ; c = 10

Bình luận (0)
HH
23 tháng 2 2021 lúc 22:39
Toán lớp 7 hả!? Tui mới lớp 5 đã có loại Toán này rồi á>:(
Bình luận (0)
 Khách vãng lai đã xóa
MA
Xem chi tiết
KL
5 tháng 12 2023 lúc 10:14

a) 3x = 7y ⇒ x/7 = y/3

⇒ x/7 = 2y/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2

x/7 = 2 ⇒ x = 2.7 = 14

y/3 = 2 ⇒ y = 2.3 = 6

Vậy x = 14; y = 6

b) x/2 = y/3 ⇒ x/6 = y/9 (1)

x/3 = z/4 ⇒ x/6 = z/8 (2)

Từ (1) và (2) ⇒ x/6 = y/9 = z/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1

x/6 = 1 ⇒ x = 1.6 = 6

y/9 = 1 ⇒ y = 1.9 = 9

z/8 = 1 ⇒ z = 1.8 = 8

Vậy x = 6; y = 9; z = 8

c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)

y/5 = z/4 ⇒ y/15 = z/12 (4)

Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1

2x/20 = 1 ⇒ x = 1.20 : 2 = 10

y/15 = 1 ⇒ y = 1.15 = 15

z/12 = 1 ⇒ z = 1.12 = 12

Vậy x = 10; y = 15; z = 12

Bình luận (0)
H24
Xem chi tiết
YN
27 tháng 9 2021 lúc 21:10

Các phần còn lại check lại đề bài.

b) Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\Rightarrow x=6\\\frac{y}{3}=3\Rightarrow y=9\\\frac{z}{4}=3\Rightarrow z=12\end{cases}}\)

d) Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow\hept{\begin{cases}x+1=6\\y+2=8\\z+3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=6\\z=7\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NM
20 tháng 7 2023 lúc 8:44

Bài 2:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)

\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)

Bình luận (0)
VN
8 tháng 12 lúc 16:31

a) x=949/27
    y=755/27
    z=61/9
    các bạn xem giúp mik đúng chx ạ, mik đặt là k

Bình luận (0)