Tìm m để đồ thị hai hàm số bậc nhất
(d1) / y = mx + 2m + 1 và (d2) / y = (2m - 3) x - 5 cắt nhau.
Bài 1 : Cho hai hàm số bậc nhất y = 3mx + 2 và y = (2m + 1)x + 3. Tìm giá trị của m để
đồ thị của hai hàm số đã cho là:
a) Hai đường thẳng cắt nhau
b) Hai đường thẳng song song.
Bài 2 : Cho hai hàm số bậc nhất (d1): y = 3mx + 4 – m2
và (d2): y = (2m + 1)x + 3. Tìm
giá trị của m để đồ thị của hai hàm số đó:
a) Cắt nhau. b) Trùng nhau
b) Song song với nhau d) Vuông góc với nhau.
Bài 1
ĐKXĐ: m ≠ 0 và m ≠ -1/2
a) Để hai đường thẳng cắt nhau thì:
3m ≠ 2m + 1
⇔ m ≠ 1
Vậy m ≠ 0; m ≠ -1/2 và m ≠ 1 thì hai đường thẳng đã cho cắt nhau
b) Để hai đường thẳng song song thì:
3m = 2m + 1
⇔ m = 1 (nhận)
Vậy m = 1 thì hai đường thẳng đã cho song song
Bài 2
ĐKXĐ: m ≠ 0 và m ≠ -1/2
a) Để hai đường thẳng đã cho cắt nhau thì:
3m ≠ 2m + 1
⇔ m ≠ 1
Vậy m ≠ 0; m ≠ -1/2; m ≠ 1 thì hai đường thẳng đã cho cắt nhau
b) Để hai đường thẳng trùng nhau thì:
3m = 2m + 1 và 4 - m² = 3
*) 3m = 2m + 1
⇔ m = 1 (nhận) (*)
*) 4 - m² = 3
⇔ m² = 4 - 3
⇔ m² = 1
⇔ m = 1 (nhận) hoặc m = -1 (nhận) (**)
Từ (*) và (**) ⇒ m = 1 thì hai đường thẳng đã cho trùng nhau
c) Để hai đường thẳng đã cho song song thì:
3m = 2m + 1 và 4 - m² ≠ 3
*) 3m = 2m + 1
⇔ m = 1 (nhận) (1)
*) 4 - m² ≠ 3
⇔ m² ≠ 1
⇔ m ≠ 1 (nhận) và m ≠ -1 (nhận) (2)
Từ (1) và (2) ⇒ Không tìm được m để hai đường thẳng đã cho song song
d) Để hai đường thẳng vuông góc thì:
3m.(2m + 1) = -1
⇔ 6m² + 3m + 1 = 0 (3)
Ta có:
6m² + 3m + 1 = 6.(m² + m/2 + 1/6)
= 6.(m² + 2.m.1/4 + 1/16 + 5/48)
= 6(m + 1/4)² + 5/8 > 0 (với mọi m)
⇒ (3) là vô lý
Vậy không tìm được m để hai đường thẳng đã cho vuông góc
Cho hai đường thẳng (d1): y= 4x+7 và (d2): y= 1-2x cắt nhau tại I. Tìm m để đồ thị hàm số bậc nhất: y=(m+1)x+2m-1 (d3) đi qua điểm I.
Giải hộ mình nha, mình đang gấp
Tọa độ I là nghiệm của hệ pt: \(\left\{{}\begin{matrix}y=4x+7\\y=1-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}0=6x+6\\y=1-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1-2\left(-1\right)=3\end{matrix}\right.\)
\(\Rightarrow\) I(-1;3)
\(I\in\left(d3\right)\Rightarrow3=\left(m+1\right)\left(-1\right)+2m-1\)
\(\Leftrightarrow m=5\)
Vậy....
Cho hai hàm số bậc nhất y = mx + 3 và y = (2m + 1)x – 5
Tìm giá trị của m để đồ thị của hai hàm số đã cho là:
Hai đường thẳng cắt nhau.
Đồ thị của hai hàm số y = mx + 3 và y = (2m + 1)x – 5 là hai đường thẳng cắt nhau khi và chỉ khi:
m ≠ 2m + 1 => m ≠ -1.
Kết hợp với điều kiện trên, ta có:
Cho hai hàm số bậc nhất y = mx + 3 và y = (2m + 1)x – 5
Tìm giá trị của m để đồ thị của hai hàm số đã cho là:
a) Hai đường thẳng song song với nhau.
b) Hai đường thẳng cắt nhau.
Hàm số y = mx + 3 có các hệ số a = m, b = 3.
Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5
a) Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:
m ≠ 0 và 2m + 1 ≠ 0 hay
Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)
Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:
m = 2m + 1 => m = - 1
Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.
b) Đồ thị của hai hàm số y = mx + 3 và y = (2m + 1)x – 5 là hai đường thẳng cắt nhau khi và chỉ khi:
m ≠ 2m + 1 => m ≠ -1.
Kết hợp với điều kiện trên, ta có:
Cho hai hàm số bậc nhất y = x –2 (D1); y= mx + 1(D2). Tìm m để đồ thịcủa (D1) và (D2) cắt nhau tại điểm A có hoành độ bằng 1
\(\text{Phương trình hoành độ giao điểm: }x-2=mx+1\\ \text{Thay }x=1\Leftrightarrow m+1=-1\Leftrightarrow m=-2\)
Cho hai hàm số bậc nhất y = mx + 3 và y = (2m + 1)x – 5. Tìm m để đồ thị của các hàm số là: a) Hai đường thẳng song song với nhau. b) Hai đường thẳng cắt nhau. c) Hai đường thẳng vuông góc với nhau.
2 hàm số bậc nhất \(y=mx+3,y=\left(2m+1\right)x-5\left(đk:m\ne0,m\ne-\dfrac{1}{2}\right)\)
a) Để 2 đường thẳng song song với nhau thì:
\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m=2m+1\\3\ne-5\left(luôn.đúng\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m=-1\end{matrix}\right.\)
b) Để 2 đường thẳng cắt nhau:
\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\ne2m+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\ne-1\end{matrix}\right.\)
c) Để 2 đường thẳng vuông góc với nhau:
\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\left(2m+1\right)=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\2m^2+m+1=0\left(VLý.do.2m^2+m+1=2\left(m+\dfrac{1}{4}\right)^2+\dfrac{7}{8}>0\right)\end{matrix}\right.\)
Vậy 2 đường thẳng này không vuông góc với nhau với mọi m
\(a,\Leftrightarrow\left\{{}\begin{matrix}m=2m+1\\-5\ne3\end{matrix}\right.\Leftrightarrow m=-1\\ b,\Leftrightarrow m\ne2m+1\Leftrightarrow m\ne-1\\ c,\Leftrightarrow m\left(2m+1\right)=-1\\ \Leftrightarrow2m^2+m+1=0\\ \Delta=1-8< 0\\ \Leftrightarrow m\in\varnothing\)
Vậy 2 đt không thể vuông góc nhau
a). Để hai hàm số bậc nhất song song với nhau thì:
\(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}m=2m+1\\3\ne-5\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}m=-1\\3\ne-5\end{matrix}\right.\)
Vậy hai hàm số bậc nhất song song với nhau khi m=-1.
b). Để hai hàm số bậc nhất cắt nhau thì:
a≠a' ⇔ m ≠ 2m+1⇒m ≠ -1.
Vậy hai hàm số bậc nhất cắt nhau khi m ≠ -1.
c). chx hc
Cho hai hàm số bậc nhất y = mx + 3 và y = (2m + 1)x – 5
Tìm giá trị của m để đồ thị của hai hàm số đã cho là:
Hai đường thẳng song song với nhau.
Hàm số y = mx + 3 có các hệ số a = m, b = 3.
Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5
Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:
m ≠ 0 và 2m + 1 ≠ 0 hay
Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)
Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:
m = 2m + 1 => m = - 1
Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.
1.Cho hai hàm số bậc nhất y=mx+3 và y=(2m -1) x-5. Tìm m để đồ thị của hai hàm số đã cho là
a) Hai đường thẳng song song
b) Hai đường thẳng cắt nhau
c) Hai đường thẳng trùng nhau
giải chi tiết giúp mk vớiiii ạ
a: Để hai đường thẳng song song thì 2m-1=m
hay m=1
Cho hai hàm số bậc nhất y = mx + 3 và y = (2m+1) x - 5. Tìm giá trị của m để đồ thị của hai hàm số đã cho là :
a) Hai đường thẳng song song với nhau
b) Hai đường thẳng cắt nhau
Hàm số y = mx + 3 có các hệ số a = m, b = 3.
Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5
Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:
m ≠ 0 và 2m + 1 ≠ 0 hay
Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)
Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:
m = 2m + 1 => m = - 1
Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.
Cho 2 hàm số bậc nhất có đồ thị là (D1) và (D2)
(D1) : y = (m+1)x - 3
(D2) : y = -2x - 5
a) Tìm m để (D1) cắt (D2) tại điểm thuộc trục hoành.
b) Tìm m để (D1), (D2), (D3) : y = -x+2 đồng quy