chứng minh 2^2^n + 10 chia hết cho 13 vs mọi số tự nhiên n
giúp mk nhé
Chứng minh rằng mọi số tự nhiên n thì tích (n+3) . ( n + b) chia hết cho 2
Các bạn giúp mk với, giải ngắn gọn thôi nhé!
Chứng minh rằng mọi số tự nhiên n thì tích (n+3) . ( n + 6) chia hết cho 2
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
chứng minh rằng n.(n+13) chia hết cho 2 với mọi số tự nhiên n. giải giúp mình ik
Ta có vì n\(\in\)N
+) TH1 :n là số lẻ=>n+13\(⋮\)2=>n.(n+13)\(⋮\)2
+)TH2 :n là số chẵn =>n\(⋮\)2=>n.(n+13)\(⋮\)2
vậy n.(n+13)\(⋮\)2 với \(\forall\)n\(\in\)N
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Bài 1. chứng tỏ rằng 175 + 244 - 1321 chia hết cho 10 .
Bài 2.chứng minh rằng với mọi số tự nhiên n :
a. 74n - 1 chia hết cho 5
b. 34n + 1 + 2 chia hết cho 5
c. 24n + 1 + 3 chia hết cho 5
d.24n + 2 + 1 chia hết cho 5
e. 92n + 1 + 1 chia hết cho 10
giúp mk vs ạ ai nhanh mk tick cho mk đang cần gấp trong ngày hôm nay đó ạ giúp vs ạ cảm ơn trước
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 8: Chứng minh
a, 2^9 - 1 chia hết cho 73
b, 5^6 - 10^4 chia hết cho 9
c, ( n+3)^2 - ( n-1)^2 chia hết cho 8 với mọi số tự nhiên n
d, ( n+6)^2 - ( n-6)^2 chia hết cho 24 với mọi số tự nhiên n
Giúp mk vs ạ mk đang cần
Bài 8:
a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)
\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)
b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)
\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)
c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)
d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12\cdot2n=24n⋮24\)(đpcm)
Câu 1: Chứng minh rằng nếu số tự nhiên n chia hết cho 11 dư 4 thì n2 chia hết cho 11 dư 5.
Câu 2: Chứng minh rằng nếu số tự nhiên n chia cho 13 dư 7 thì n2-10 chia hết cho 13.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
a,Tính S=4+7+10+13+......2014
b,Chứng minh rằng n.(n+2013)chia hết cho 2 với mọi số tự nhiên n
c,Cho M=2+2^2+2^3+.....2^20.Chứng tỏ rằng M chia cho 15
\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)
1. Chứng minh rằng N Không chia hết cho 7 thì n^ 2 cộng 1 hoặc n^3 - 1 chia hết cho 7
2. Chứng minh rằng với mọi số tự nhiên N lẻ thì
(n >1) 13 lần số chia hết cho 8
3. Chứng minh rằng 2^4.n -1 chia hết cho 15. Giải nhanh giúp mình với để cho minh nộ bài nhé các bạn
chứng minh n.(n+13) chia hết cho 2 với mọi số tự nhiên
n là a
n+13 là b
mà a và b không thể cùng là 2 số chẵn hoặc 2 số lẽ ( 1 số chẵn 1 số lẽ)
=> n.(n+13) là số chẵn với mọi số tự nhiên
mà số chẵn thì chia hết cho 2!