rút gọn rõ biểu thức sau
\(\sqrt[4]{2}\) + \(\sqrt[4]{162}\) +\(\sqrt[4]{32}\)
Rút gọn biểu thức
1)\(\sqrt{6+\sqrt{32}}\) - \(\sqrt{11-\sqrt{72}}\)
2) \(\sqrt{21-4\sqrt{5}}\) + \(\sqrt{21+4\sqrt{5}}\)
1) \(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|2+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)
\(=2+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}-1\)
2) \(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}\)
\(=\sqrt{20-4\sqrt{5}+1}+\sqrt{20+4\sqrt{5}+1}\)
\(=\sqrt{\left(2\sqrt{5}\right)^2-2\sqrt{5}\cdot2\cdot1+1^2}+\sqrt{\left(2\sqrt{5}\right)^2+2\sqrt{5}\cdot2\cdot1-1^2}\)
\(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=\left|2\sqrt{5}-1\right|+\left|2\sqrt{5}+1\right|\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
Rút gọn biểu thức.
a) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
b) \(\sqrt{17-3\sqrt{32}}+\sqrt{17-3\sqrt{32}}\)
a: \(=\sqrt{8+2\cdot2\sqrt{2}\cdot\sqrt{5}+5}+\sqrt{8-2\cdot2\sqrt{2}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
b: \(=2\cdot\sqrt{17-3\sqrt{32}}\)
\(=2\cdot\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)
\(=2\left(3-2\sqrt{2}\right)=6-4\sqrt{2}\)
Rút gọn các biểu thức sau:
a) \(\sqrt{4\frac{1}{2}}-\sqrt{32}+\sqrt{72}-\sqrt{162}\)
b) \(\left(\frac{1}{\sqrt{5}-3}-\frac{1}{\sqrt{5}+3}\right)\times\frac{3-\sqrt{3}}{1-\sqrt{3}}\)
c) \(\left(1-\frac{4\sqrt{a}}{a-1}+\frac{1}{\sqrt{a}-1}\right):\frac{a-2\sqrt{a}}{a-1}\)
a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)
\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)
\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)
b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)
\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)
c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)
\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\left(\sqrt{3}-2\right)\sqrt{7+4\sqrt{3}}\)
b) \(\sqrt{6+\sqrt{32}}\) - \(\sqrt{11-\sqrt{72}}\)
c) \(\sqrt{21-4\sqrt{5}}\) + \(\sqrt{21+4\sqrt{5}}\)
a: \(=\left(\sqrt{3}-2\right)\cdot\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)
=3-4=-1
b: \(=\sqrt{6+4\sqrt{2}}-\sqrt{11-2\sqrt{18}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1\)
c: \(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
rút gọn biểu thức sau
a.\(\sqrt{8}-\sqrt{18}+2\sqrt{32}\)
b.\(\left(\dfrac{1}{\sqrt{x}+4}+\dfrac{1}{\sqrt{x}-4}\right)\dfrac{\sqrt{x}+4}{\sqrt{x}}\) với x>0,x\(\ne16\)
Câu 1: \(\sqrt{8}\) − \(\sqrt{18}\) + \(2\sqrt{32}\) = \(\sqrt{4\text{×}2}\) − \(\sqrt{\text{9×2}}\) + 2\(\sqrt{\text{16×2}}\)
=2\(\sqrt{2}\) − 3\(\sqrt{2}\) + 2×4\(\sqrt{2}\)
=(2− 3+ 8)\(\sqrt{2}\)
=7\(\sqrt{2}\)
Câu 2: Mik ko chắc làm đúng hay ko nên ko làm
b: \(=\dfrac{\sqrt{x}-4+\sqrt{x}+4}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\dfrac{\sqrt{x}+4}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-4}\)
rút gọn và tính biểu thức sau
\(\sqrt{6+4\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\left|2+\sqrt{2}\right|-\left|2-\sqrt{2}\right|\)
\(=2+\sqrt{2}-2+\sqrt{2}=2\sqrt{2}\)
Rút gọn các biểu thức sau. ghi rõ đkxđ giúp mk
a) √2+√32+√72-√18
b) \(\dfrac{13}{5+2\sqrt{ }3}\)+\(\dfrac{6}{\sqrt{ }3}\)c) 2√5-\(\sqrt{\left(2-\sqrt{5}\right)^2}\)Vì đây toàn là số cụ thể rồi nên không có đkxđ bạn nhé.
Lời giải:
a.
$=\sqrt{2}+4\sqrt{2}+6\sqrt{2}-3\sqrt{2}=8\sqrt{2}$
b.
$=\frac{13(5-2\sqrt{3})}{(5+2\sqrt{3})(5-2\sqrt{3})}+2\sqrt{3}=\frac{13(5-2\sqrt{3})}{13}+2\sqrt{3}$
$=5-2\sqrt{3}+2\sqrt{3}=5$
c.
$=2\sqrt{5}-|2-\sqrt{5}|=2\sqrt{5}-(\sqrt{5}-2)=\sqrt{5}+2$
\(\)Bài 1: Rút gọn các biểu thức sau
a) A= \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
b) B= \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
c) C= \(\sqrt{72}+\sqrt{4\frac{1}{2}}-\sqrt{32}-\sqrt{162}\)
a, A = \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
= \(3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)
= \(-4\sqrt{3}\)
b, B = \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
= \(4\sqrt{2}-5\sqrt{2}+3\sqrt{2}\)
= \(2\sqrt{2}\)
rút gọn biểu thức sau: \(\sqrt{4+\sqrt{15}}-\sqrt{4-\sqrt{15}}\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
rút gọn các biểu thức sau: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
\(\sqrt{27}+\sqrt{\hept{\begin{cases}\\4\\\end{cases}}\frac{1}{2}}-\sqrt{32}-\sqrt{162}\)
\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}=3\sqrt{3}+8\sqrt{2}-15\sqrt{3}=-4\sqrt{3}\)
\(\sqrt{32}-\sqrt{50}+\sqrt{18}=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
đổi thành : 2........2..........2.............2.................2...............2 =6
2.2.2-2-2+2=6