trong mặt phẳng tọa độ Oxy ,cho tam giác ABC và M(4;-1), N(0;2), P(5;3) lần lượt là trung điểm các cạnh BC,CA,AB. Tọa độ điểm B là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 1), B(4; 13), C(5; 0). Tọa độ trực tâm H của tam giác ABC là
A.(2; 2)
B. (1; 1)
C.( -2; -2)
D. (-1; -1)
A B → = 3 ; 12 , A C → = 4 ; − 1 ⇒ ( A B ) ⃗ . ( A C ) ⃗ = 3 . 4 + 12 . ( - 1 ) = 0 ⇒ ∆ A B C vuông tại A. Trực tâm của tam giác là đỉnh A. Chọn B
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 4) và B(1; 1). Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại B?
A. C(4; 0)
B.C(- 2; 2)
C. C(4; 0); C( -2; 2)
D. C(2; 0)
Gọi C(x, y).
Ta có B A → = 1 ; 3 B C → = x − 1 ; y − 1 .
Tam giác ABC vuông cân tại B:
⇔ B A → . B C → = 0 B A = B C ⇔ 1. x − 1 + 3. y − 1 = 0 1 2 + 3 2 = x − 1 2 + y − 1 2
⇔ x = 4 − 3 y 10 y 2 − 20 y = 0 ⇔ y = 0 x = 4 hay y = 2 x = − 2 .
Chọn C.
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=√5AE5AE ( biết O là gốc tọa độ và m lớn hơn 0 ).
a: \(AB=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-1-2\right)^2}=5\)
\(BC=\sqrt{\left(5-2\right)^2+\left(3+1\right)^2}=5\)
Do đó: AB=BC
hay ΔABC cân tại B
Trong mặt phẳng tọa độ Oxy, cho hai điểm A( -2; 4) và B(8; 4). Tìm tọa độ điểm C thuộc trục hoành sao cho tam giác ABC vuông tại C.
A. C( 6; 0)
B. C(0;0); C( 6; 0)
C. C (-2; 0)
D. C(-1; 0)
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(-2; 4) và B(8; 4). Tìm tọa độ điểm C thuộc trục hoành sao cho tam giác ABC vuông tại C.
A. C (6; 0)
B. C (0; 0); C( 6; 0).
C. C(0; 0)
D.C(-1; 0)
Ta có C ∈ O x nên C(c; 0) và C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .
Tam giác ABC vuông tại C nên C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0
⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .
Chọn B.
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(-2; 4) và B (8; 4). Tìm tọa độ điểm C thuộc trục hoành sao cho tam giác ABC vuông tại C.
A. C(6; 0)
B. C(0;0); C( 6; 0)
C. C(0; 0)
D. C(-1; 0)
Ta có C ∈ O x nên C(c, 0) và C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .
Tam giác ABC vuông tại C nên C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0
⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .
Chọn B.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1;2), B(2;3), C(-3;-4). Diện tích tam giác ABC bằng
A. 1.
B. 2
C. 1 + 2
D. 3 2
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 3); B(-2; 4); C ( 5; 3). Tìm tọa độ trọng tâm G của tam giác đã cho.
A. G 2 ; 10 3 .
B. G 8 3 ; − 10 3 .
C. G 2 ; 5 .
D. G 4 3 ; 10 3 .
Tọa độ trọng tâm G x G ; y G là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .
Chọn D.
Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(1;5) B(-4;-5) C(4;-1)
a) Tìm tọa độ chân đường phân giác trong và ngoài cho góc A
b) Tìm tọa độ tâm đường tròn nối tiếp tam giác ABC
trong mặt phẳng tọa độ OXY cho các điểm A (-1;1) B (3;1) C (2;4)
tính góc A của tam giác ABC và diện tích của tam giác ABC
tìm tọa độ trực tâm của tam giác ABC
\(\overrightarrow{AB}=\left(4;0\right)\)
\(\overrightarrow{AC}=\left(3;3\right)\)
\(\cos\widehat{A}=\dfrac{4\cdot3+3\cdot0}{\sqrt{4^2}+\sqrt{3^2+3^2}}=\dfrac{12}{4+3\sqrt{2}}=-24+18\sqrt{2}\)
=>Đề sai rồi bạn