Những câu hỏi liên quan
VT
Xem chi tiết
CN
Xem chi tiết
HN
22 tháng 7 2016 lúc 10:51

a) Cần chứng minh : \(a^4-1\)chia hết cho 5 với mọi a là số tự nhiên.

Thật vậy : Với mọi số tự nhiên a không chia hết cho 5, sẽ có một trong các dạng : \(a=5k\pm1,a=5k\pm2\)(k thuộc N)

\(a^2\)có một trong hai dạng \(5k+1\)hoặc \(5k+4\)

\(a^4\)có một dạng duy nhất là \(5k+1\). Vậy \(a^4-1⋮5\)với mọi a là số tự nhiên.

Ta biểu diễn : \(A=\left(n^4-1\right)+5\) . Nhận thấy n4-1 chia hết cho 5 , 5 chia hết cho 5 => A chia hết cho 5. Mà A là số nguyên tố, vậy A = 5. Suy ra được n = 1

b) Với n = 1 , dễ thấy B = 5 là số nguyên tố

Với n = 2 , B = 32 không là số nguyên tố.

Với n = 3 , B = 145 không là số nguyên tố

Xét với n là số nguyên tố, n > 3, biểu diễn B dưới dạng : \(B=\left(n^4-1\right)+\left(4^n+1\right)\)

Dễ thấy n4-1 chia hết cho 5 , \(4^n+1=4^n+1^n=\left(4+1\right).M=5M⋮5\)

Suy ra B chia hết cho 5. Mà B là số nguyên tố, vậy B = 5. Vậy n = 1 thỏa mãn đề bài

Bình luận (0)
MH
Xem chi tiết
NL
12 tháng 1 2022 lúc 0:02

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

Bình luận (0)
NL
12 tháng 1 2022 lúc 15:09

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

Bình luận (9)
KN
Xem chi tiết
ND
Xem chi tiết
NL
20 tháng 3 2022 lúc 23:07

Đặt \(A=n^4-3n^3+4n^2-3n+3=\left(n^2+1\right)\left(n^2-3n+3\right)\)

Do \(n^2+1>1;\forall x\in Z^+\) nên N là số nguyên tố khi và chỉ khi:

\(\left\{{}\begin{matrix}n^2-3n+3=1\\n^2+1\text{ là số nguyên tố}\end{matrix}\right.\)

\(n^2-3n+3=1\Leftrightarrow n^2-3n+2=0\Rightarrow\left[{}\begin{matrix}n=1\\n=2\end{matrix}\right.\)

Với \(n=1\Rightarrow n^2+1=2\) là SNT (thỏa mãn)

Với \(n=2\Rightarrow n^2+1=5\) là SNT (thỏa mãn)

Bình luận (0)
UN
Xem chi tiết
LH
17 tháng 2 2016 lúc 19:56

a)n=1

b)n=1

c)n=1

Bình luận (0)
UN
17 tháng 2 2016 lúc 20:34

Bạn ơi giải hẳn hoi ra được không

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
H24
20 tháng 3 2020 lúc 11:24

Gọi d là ước chung của n + 1 và 7n + 4 

Ta có : \(\hept{\begin{cases}n+1⋮d\\7n+4⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}7.\left(n+1\right)⋮d\\7n+4⋮d\end{cases}}\)=> 7.(n+ 1 ) - ( 7n + 4 ) \(⋮d\)

                                                                                  7n + 7 - 7n - 4 \(⋮d\)

                                                                                        \(⋮d\)=> d \(\inƯ\left(3\right)=\left\{1;3\right\}\)

Vậy để n + 1 và 7n + 4 là hai số nguyên tố cùng nhau thì d ={ 1;3 }

              

Bình luận (0)
 Khách vãng lai đã xóa
MW
Xem chi tiết
VH
6 tháng 11 2019 lúc 17:19

Tôi vẫn chưa nghĩ ra và cũng đang dặt câu hỏi đây

Bình luận (0)
 Khách vãng lai đã xóa