Cho x2+y2 = 2 . Chứng minh rằng :
2(x+1)(y+1) = (x+y)(x+y+2)
Cho a,b,x,y∈R thoả mãn a2+b2=x2+y2=1.
Chứng minh rằng:
\(-\sqrt{2}\) ≤ a(x+y)+b(x-y) ≤\(\sqrt{2}\)
Cho 2.(x2+y2) = (x+y)2
Chứng minh rằng: x=y
chứng minh rằng với mọi x;y ta luôn có : (1+x2)(1+y2)+4xy+2(x+y)(1+xy) là số chính phương
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y+1+xy\right)^2\) là SCP
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)
= 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)
=(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)
=(x+y)2+(xy+1)2+2(x+y)(1+xy)
=(x+y+xy+1)2
cho x, y là các số nguyên dương thỏa mãn \(\frac{x^2-1}{2}=\frac{y^2-1}{3}\) .chứng minh rằng x2 -y2 chia hết cho 40
Giả thiết đã cho có thể viết lại được thành 3x2-2y2=1(1)
Từ đây, ta có x lẻ nên x2chia 8 dư 1 => 3x2 chia 8 dư 3
Từ đo ta có 2y2 chia 8 dư 2
=> y2 chia 8 dư 1. Do đó: x2-y2 chia 8 (2)
Tiếp theo ta sẽ chứng minh x2-y2chia hết cho 5 (3)
Chú ý rằng số dư của a2 (a thuộc Z) khi chia cho 5 là 0;1 và 4
Nếu y2 chia 5 thì từ (1) ta có 3x2 chia 5 dư 1, mâu thuẫn do só dư của 3x2 khi chia 5 chỉ có thể là 0;3;2Nếu y2 chia 5 dư 4 thì từ (1) ta có 3x2 chia 5 dư 4, mâu thuẫnDo đó ta phải có y2 chia 5 dư 1. Khi đó từ (1) ta cũng suy ra x2 chia 5 dư 1. Dẫn đến x2-y2 chia hết cho 5Từ (2) và (3) với chú ý (5;8)=1 ta thu được x2-y2 chia hết cho 40 (đpcm)
Chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến:
a) y.(x2-y2).(x2+y2)-y.(x4-y4)
b) (\(\dfrac{1}{3}\)+2x).(4x2-\(\dfrac{2}{3}\)x+\(\dfrac{1}{9}\))-(8x3-\(\dfrac{1}{27}\))
c) (x-1)3-(x-1).(x2+x+1)-3.(1-x).x
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
cho ba số dương x, y , z thoả mãn x+y+z=3/4 chứng minh rằng
6(x2+y2+z2)+10(xy+yz+xz)+2(1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z))>=9
\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)
\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)
\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)
cho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/ycho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/y
bài 1:. So sánh: 200920 và 2009200910
bài 2:
Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
bài 3: Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
bài 4:Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
ko khó đâu :))
Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10
2009200910 = (10001.2009)10
Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10
Vậy 200920 < 2009200910
Bai 3:
Theo giả thiết suy ra các tích x1x2 , x2x3 , ...., xnx1 chỉ nhận một trong hai giá trị là 1 và -1
Do đó x1x2 + x2x3 +...+ xnx1 = 0 <=> n = 2m
=> Đồng thời có m số hạng bằng 1 và m số hạng bằng -1
Nhận thấy : (x1x2)(x2x3)...(xnx1) = x12x22...xn2 = 1
=> Số các số hạng bằng -1 phải là số chẵn
=> m = 2k
Suy ra n = 2m = 2.2k = 4k
=> n chia hết cho 4
bai 2:
25−y²=8(x−2009)
⇒25−y²=8x−16072
⇒8x=25−y²−16072
⇒8x=25−16072−y²
⇒8x=−16047−y²
8×−16047−y²8=−16047−y²
⇒−16047−y²=−16047−y²
⇒y có vô giá trị nhé (y∈R)
Vậy
Chứng minh rằng nếu x+y=1 thì x2 + y2 \(\ge\) \(\dfrac{1}{2}\)
Mong mn giúp đỡ
\(x+y=1\)
Áp dụng BĐT AM-GM, ta có:
\(\dfrac{x^2}{1}+\dfrac{y^2}{1}\ge\dfrac{\left(x+y\right)^2}{2}=\dfrac{1^2}{2}=\dfrac{1}{2}\)
--> \(x^2+y^2\ge\dfrac{1}{2}\)
a) Chứng minh: nếu x2+y2=1 thì -√2≤x+y≤√2
b)cho x,y,z là các số thực dương
chúng minh :1/x + 1/y +1/z ≥ 1/ √xy+ 1/ √yz+ 1/ √xz
Lời giải:
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 2\geq (x+y)^2$
$\Leftrightarrow \sqrt{2}\geq x+y\geq -\sqrt{2}$
Ta có đpcm.
Bạn mới bổ sung câu b thì làm như sau:
Áp dụng BĐT Cô-si cho các số dương:
$\frac{1}{x}+\frac{1}{y}\geq \frac{2}{\sqrt{xy}}$
$\frac{1}{y}+\frac{1}{z}\geq \frac{2}{\sqrt{yz}}$
$\frac{1}{z}+\frac{1}{x}\geq \frac{2}{\sqrt{zx}}$
Cộng theo vế và thu gọn:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}$
Dấu "=" xảy ra khi $x=y=z$