Những câu hỏi liên quan
DH
Xem chi tiết
PT
19 tháng 11 2024 lúc 20:48

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

Bình luận (0)
H24
Xem chi tiết
NM
23 tháng 11 2021 lúc 16:00

\(a,=2x\left(x+3\right)\\ b,=x^3\left(x+3\right)+\left(x+3\right)=\left(x^3+1\right)\left(x+3\right)\\ =\left(x+1\right)\left(x+3\right)\left(x^2-x+1\right)\\ c,=64-\left(x-y\right)^2=\left(8-x+y\right)\left(8+x-y\right)\\ A=x^2+6x+5+x^3-8-x^2-x+2\\ A=x^3+5x-1\)

Bình luận (0)
TC
23 tháng 11 2021 lúc 16:14

a) 2x2+6x=2x(x+3)
b) x4+3x3+x+3=(x4+x)+(3x3+3)=x(x3+1)+3(x3+1)=(x+3)(x3+1)
c) 64-x2-y2+2xy=-(x2-2xy+y2)+82=8-(x+y)2=(8+x+y)(8-x-y)

A= (x+5)(x+1)+(x-2)(x2+2xx+4)-(x2+x-2)
A= x2+6x+5+x3-8-x2-x+2
A= x3+(x2-x2)+(6x-x)+(5-8+2)
A= x3+5x-1

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 1 2024 lúc 8:35

Bài 1:

\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)

\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)

\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)

Bình luận (2)
H24
13 tháng 1 2024 lúc 8:45

Bài 2:

\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)

Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:

\(\left(y-1\right)\left(y+1\right)=120\)

\(\Leftrightarrow y^2-1=120\)

\(\Leftrightarrow y^2=121\)

\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)

+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)

+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)

\(\Leftrightarrow x^2+5x+16=0\)

\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

\(\Rightarrow\) loại

Vậy \(x\in\left\{1;-6\right\}\).

\(b,\) Đề thiếu vế phải rồi bạn.

Bình luận (0)
H24
Xem chi tiết
KL
10 tháng 12 2023 lúc 13:11

a) x² + 6x + 8

= x² + 2x + 4x + 8

= (x² + 2x) + (4x + 8)

= x(x + 2) + 4(x + 8)

= (x + 2)(x + 4)

b) 3x² - 2(x - y)² - 3y²

= (3x² - 3y²) - 2(x - y)²

= 3(x² - y²) - 2(x - y)²

= 3(x + y)(x - y) - 2(x - y)²

= (x - y)[3(x + y) - 2(x - y)]

= (x - y)(3x + 3y - 2x + 2y)

= (x - y)(x + 5y)

c) 4x² - 9y² + 4x - 6y

= (4x² - 9y²) + (4x - 6y)

= (2x - 3y)(2x + 3y) + 2(2x - 3y)

= (2x - 3y)(2x + 3y + 2)

d) x(x + 1)² + x(x - 5) - 5(x + 1)²

= [x(x + 1)² - 5(x + 1)²] + x(x - 5)

= (x + 1)²(x - 5) + x(x - 5)

= (x - 5)[(x + 1)² + x]

= (x - 5)(x² + 2x + 1 + x)

= (x - 5)(x² + 3x + 1)

e) 2xy - x² + 3y² - 4y + 1

= -x² + 2xy - y² + 4y² - 4y + 1

= -(x² - 2xy + y²) + (4y² - 4y + 1)

= -(x - y)² + (2y - 1)²

= (2y - 1)² - (x - y)²

= (2y - 1 - x + y)(2y - 1 + x - y)

= (3y - x - 1)(x + y - 1)

f) 4x¹⁶ + 81

= (2x⁸)² + 2.2x⁸.9 + 9² - 2.2x⁸.9

= (2x⁸ + 9)² - 36x⁸

= (2x⁸ + 9) - (6x⁴)²

= (2x⁸ + 9 - 6x⁴)(2x⁸ + 9 + 6x⁴)

= (2x⁸ - 6x⁴ + 9)(2x⁸ + 6x⁴ + 9)

Bình luận (0)
LN
Xem chi tiết
NT
14 tháng 8 2021 lúc 15:09

1: \(6x^2y-9xy^2+3xy\)

\(=3xy\left(2x-3y+1\right)\)

2: \(\left(4-x\right)^2-16\)

\(=\left(4-x-4\right)\left(4-x+4\right)\)

\(=-x\cdot\left(8-x\right)\)

3: \(x^3+9x^2-4x-36\)

\(=x^2\left(x+9\right)-4\left(x+9\right)\)

\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)

Bình luận (0)
H24
14 tháng 8 2021 lúc 15:10

1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)

2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)

3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 8 2023 lúc 22:01

b: =x^3+2x^2-x^2+4

=x^2(x+2)-(x+2)(x-2)

=(x+2)(x^2-x+2)

c: =x^3-2x^2+x^2-4

=x^2(x-2)+(x-2)(x+2)

=(x-2)(x^2+x+2)

d: =(x-y)(x+y)-7(x+y)

=(x+y)(x-y-7)

Bình luận (0)
TK
Xem chi tiết
NT
22 tháng 10 2023 lúc 20:58

2:

a: \(x^2-12x+20\)

\(=x^2-2x-10x+20\)

=x(x-2)-10(x-2)

=(x-2)(x-10)

b: \(2x^2-x-15\)

=2x^2-6x+5x-15

=2x(x-3)+5(x-3)

=(x-3)(2x+5)

c: \(x^3-x^2+x-1\)

=x^2(x-1)+(x-1)

=(x-1)(x^2+1)

d: \(2x^3-5x-6\)

\(=2x^3-4x^2+4x^2-8x+3x-6\)

\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(2x^2+4x+3\right)\)

e: \(4y^4+1\)

\(=4y^4+4y^2+1-4y^2\)

\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)

\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)

f; \(x^7+x^5+x^3\)

\(=x^3\left(x^4+x^2+1\right)\)

\(=x^3\left(x^4+2x^2+1-x^2\right)\)

\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)

\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)

\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)

h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)

\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)

\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-4\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)

\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)

\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)

i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)

\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)

\(=\left(x+2y-1\right)\left(x+2y-3\right)\)

j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)

\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)

\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)

\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)

Bình luận (0)
NY
Xem chi tiết
KT
12 tháng 8 2018 lúc 14:55

a)  \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)

b)  \(x^3-9x^2+6x+16=x^3-8x^2-x^2+8x-2x+16\)

\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)

\(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)

Bình luận (0)
TL
Xem chi tiết
DT
19 tháng 8 2019 lúc 16:57

a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)

\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)

c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)

Bình luận (0)
DT
19 tháng 8 2019 lúc 17:02

b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)

Bình luận (0)