Phân tích đa thức thành nhân tử:
a)xy(x+y)+yz(y+z)+xz(x+z)+2xyz
b)3(x-3)(x+7)+(x-4)^2
c)4x^2-y^2+4x+1
Phân tích đa thức thành nhân tử
1) 4x^2-7x-2
2)4x^2+5x-6
3)5x^2-18x-8
4)xy(x+y)-yz(y+z)+xz(x-z)
5) xy(x+y)+yz+xz(x+z)+2xyz
1) \(4x^2-7x-2=4x^2-8x+x-2=\left(4x^2-8x\right)+\left(x-2\right)\)
\(=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)
2) \(4x^2+5x-6=4x^2+8x-3x-6=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(4x-3\right)\)
3) \(5x^2-18x-8=5x^2-20x+2x-8=\left(5x^2-20x\right)+\left(2x-8\right)\)
\(=5x\left(x-4\right)+2\left(x-4\right)=\left(x-4\right)\left(5x+2\right)\)
4) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
\(=xy\left(x+y\right)-y^2z-yz^2+x^2z-xz^2\)
\(=xy\left(x+y\right)+\left(x^2z-y^2z\right)-\left(yz^2+xz^2\right)\)
\(=xy\left(x+y\right)+z\left(x^2-y^2\right)-z^2.\left(x+y\right)\)
\(=xy\left(x+y\right)+z\left(x-y\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=xy\left(x+y\right)+\left(zx-zy\right)\left(x+y\right)-z^2\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+xz-yz-z^2\right)=\left(x+y\right).\left[x\left(y+z\right)-z\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x-z\right)\)
1) 4x2 - 7x - 2 = 4x2 - 8x + x - 2 = 4x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 4x + 1 )
2) 4x2 + 5x - 6 = 4x2 - 8x + 3x - 6 = 4x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 4x + 3 )
3) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )
4) xy( x + y ) - yz( y + z ) + xz( x - z )
= x2y + xy2 - y2z - yz2 + xz( x - z )
= ( x2y - yz2 ) + ( xy2 - y2z ) + xz( x - z )
= y( x2 - z2 ) + y2( x - z ) + xz( x - z )
= y( x - z )( x + z ) + y2( x - z ) + xz( x - z )
= ( x - z )[ y( x + z ) + y2 + xz ]
= ( x - z )( xy + yz + y2 + xz )
= ( x - z )[ ( xy + y2 ) + ( xz + yz ) ]
= ( x - z )[ y( x + y ) + z( x + y ) ]
= ( x - z )( x + y )( y + z )
5) xy( x + y ) + yz + xz( x + z ) + 2xyz ( đề có thiếu không vậy .-. )
\(4x^2-7x-2=\left(4x^2-8x\right)+\left(x-2\right)=4x\left(x-2\right)+\left(x-2\right)=\left(4x-1\right)\left(x-2\right)\)
\(=4x^2+8x-3x-6=4x\left(x+2\right)-3\left(x+2\right)=\left(4x-3\right)\left(x+2\right)\)
\(=5x^2-18x-8=5x^2-20x+2x-8=5x\left(x-4\right)+2\left(x-4\right)=\left(5x+2\right)\left(x-4\right)\)
\(5=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Phân tích đa thức thành nhân tử
1. (x^2+y^2+z^2).(x+y+z)^2+(xy+yz+xz)^2
2. (x+1)^4 +(x^4+x^2+1)
3. 4x^4+4x^3+5x^2+2x+1
Phân tích đa thức thành nhân tử
a) 8x^3+4x^2-y^3-y^2
b) xy(x+y) +yz(y+z)+xz(x+z)+2xyz
Phân tích đa thức sau thành nhân tử:
a. x\(^3\) - 4x\(^2\) + 4x - xz\(^2\)
b. x\(^2\) - 2xy + y\(^2\) - z\(^2\) + 10z - 25
\(a,=x\left(x^2-4x+4-z^2\right)=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-z-2\right)\left(x+z-2\right)\\ b,=\left(x-y\right)^2-\left(z-5\right)^2=\left(x-y-z+5\right)\left(x-y+z-5\right)\)
\(x^3-4x^2+4x-xz^2=x\left(x^2-4x+4-z^2\right)\)
\(=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-2-z\right)\left(x-2+z\right)\)
\(x^2-2xy+y^2-z^2+10z-25\)
\(=\left(x-y\right)^2-\left(z-5\right)^2\)
\(=\left(x-y+z-5\right)\left(x-y-z+5\right)\)
a. x3 - 4x2 + 4x - xz2
= x(x2 - 4x + 4 ) - z2
= x(x - 4)2 - z2
=x( x - 4 - z ) ( x - 4 + z )
b. x2 - 2xy +y2 - z2 + 10z - 25
= ( x - y )2 - ( z - 5 )2
= ( x - y - z + 5 )(x - y + z - 5 )
Phân tích đa thức thành nhân tử:
a, \(x^3+3x^2+3x+1-27z^3\)
b, \(x^2-2xy+y^2-xz+yz\)
c, \(x^4+4x^2-5\)
a.
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)
\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)
b.
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c.
\(=x^4-1+4x^2-4\)
\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) Ta có: \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
b) Ta có: \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
Phân tích đa thức thành nhân tử:
a) x^3 - x^2 + 8x - 8
b) 8x^3 - 8x^2y + 2xy^2
c) (x^2 + y^2 - z^2)^2 - 4x^2y^2
d) (x^2 - y^2 - 5)^2 - 4(x^2y^2 + 4xy + 4)
e) x^3 - y^3 - 3x^2 + 3x - 1
a) (x3-x2)+(8x-8)=x(x-1)+8(x-1)=(x2+8)(x-1)
b) 8x3-8x2y+2xy2=2x(4x2-4xy+y2)
c) (x2+y2-z2)2 - 4x2y2=(x2+y2-z2)2 - (2xy)2=(x2+y2-z2-2xy)(x2+y2-z2+2xy)
Câu 1: phân tích đa thức thành nhân tử:
a) x^2 +5-14.
b) xz+yz-5 (x+y).
Câu 2: tìm x
x^2 -4x = -4.
Câu 1:
Phần a đề sai nên mk sửa lại:
a, x2 + 5x - 14 = x2 - 2x + 7x - 14 = x(x - 2) + 7(x - 2) = (x - 2)(x + 7)
b, xz + yz - 5(x + y) = z(x + y) - 5(x + y) = (x + y)(z - 5)
Câu 2:
x2 - 4x = -4
\(\Leftrightarrow\) x2 - 4x + 4 = 0
\(\Leftrightarrow\) (x - 2)2 = 0
\(\Leftrightarrow\) x - 2 = 0
\(\Leftrightarrow\) x = 2
Vậy x = 2
Chúc bn học tốt!
1.Đa thức 4x(2y-z) +7y(2y-z) được phân tích thành nhân tử là :
A .(2y+z)(4x+7y)
B.(2y-z)(4x-7y)
C.(2y+z)(4x-7y)
D. (2y-z)(4x+7y)
2 Phân tích đa thức x2+3x+xy+3y thành nhân tử ta được :
A. (x+3)(y+3)
B. (x-y)(x+3)
C. (x+3)(x+y)
D. Cả 3 đều sai
Phân tích đa thức thành nhân tử:
a)6x^3y^2.(2-x)+9x^2y^2.(x-2)
b)x^2-4x+4y-y^2
c)81x^2+6yz-9y^2-z^2
a, \(6x^3y^2.\left(2-x\right)+9x^2y^2\left(x-2\right)\)
\(=6x^3y^2.\left(2-x\right)-9x^2y^2\left(2-x\right)\)
\(=y^2.\left(2-x\right)\left(6x^3-9x^2\right)\)
\(=3x^2y^2.\left(2-x\right)\left(2x-3\right)\)
b. \(x^2-4x+4y-y^2\)
\(=\left(x^2-y^2\right)-\left(4x-4y\right)\)
\(=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4\right)\)