tìm x
\(\dfrac{-7}{1+2x}=\dfrac{5}{2x-3}\)
mọi người giúp mình ạ
a, \(\dfrac{2x+3}{24}\) = \(\dfrac{3x-1}{32}\)
b, \(\dfrac{13x-2}{2x+5}\) = \(\dfrac{76}{17}\)
Đề bài là tìm x, mọi người giúp mình vs ạ
a) \(\dfrac{2x+3}{24}=\dfrac{3x-1}{32}\)
\(\Rightarrow32\left(2x+3\right)=24\left(3x-1\right)\)
\(\Rightarrow64x+96=72x-24\)
\(\Rightarrow8x=120\Rightarrow x=15\)
b) \(\dfrac{13x-2}{2x+5}=\dfrac{76}{17}\)
\(\Rightarrow17\left(13x-2\right)=76\left(2x+5\right)\)
\(\Rightarrow221x-34=152x+380\)
\(\Rightarrow69x=414\Rightarrow x=6\)
Mọi người giúp mình vs ạ. Mình đang cần gấp
Bài 1:Cho biểu thức A=\(\left(\dfrac{2}{1+2x}+\dfrac{4x^2+1}{4x^2-1}-\dfrac{1}{1-2x}\right):\dfrac{2}{4x^2-1}\)
a) Rút gọn biểu thức
b)Tính giá trị của A tại x=0; x=-3; x=\(\dfrac{1}{2}\)
c) Tìm x để A=2
Bài 2: Tìm giá trị nguyên thử của n để biểu thức B=\(\dfrac{2n^2+5n-1}{2n-1}\)có giá trị nguyên
TÍNH ĐẠO HÀM :
\(y=\left(1-3x\right).\sqrt{x-3}\)
\(y=\sqrt{2x+1}+\dfrac{1}{x+1}\)
\(y=\sqrt{\dfrac{1-x}{1+x}}\)
\(y=cos5x.co7x\)
\(y=cosx.sin^2x\)
\(y=tan^42x\)
\(y=\dfrac{2x}{sinx+cosx}\)
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ MÌNH CẢM ƠN
1/ \(y'=\left(1-3x\right)'\sqrt{x-3}+\left(1-3x\right)\left(\sqrt{x-3}\right)'=-3\sqrt{x-3}+\dfrac{1}{2\sqrt{x-3}}\left(1-3x\right)\)
2/ \(y'=\dfrac{1}{\sqrt{2x+1}}-\dfrac{1}{\left(x+1\right)^2}\)
3/ \(y'=\dfrac{1}{2}.\sqrt{\dfrac{1+x}{1-x}}.\left(\dfrac{1-x}{1+x}\right)'=\dfrac{1}{2}\sqrt{\dfrac{1+x}{1-x}}.\dfrac{-2}{\left(1+x\right)^2}=-\sqrt{\dfrac{1+x}{1-x}}.\dfrac{1}{\left(1+x\right)^2}\)
4/ \(y'=\left(\cos5x\right)'.\cos7x+\cos5x.\left(\cos7x\right)'=-5\sin5x.\cos7x-7\cos5x\sin7x\)
5/ \(y'=\left(\cos x\right)'\sin^2x+\cos x\left(\sin^2x\right)'=-\sin^3x+2\sin x.\cos^2x\)
6/ \(y'=\left(\tan^42x\right)'=4.\tan^32x.\dfrac{2}{\cos^22x}\)
7/ \(y'=\dfrac{2\sin x+2\cos x-2x.\cos x+2x\sin x}{\left(\sin x+\cos x\right)^2}\)
Ờm, bạn tự rút gọn nhé :) Mình đang hơi lười :b
Giải các phương trình sau:
\(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
Giúp mình với ạ :333
Mãi iu mọi người ><
=>0,2x+0,4-0,5x=0,25-0,5x+0,25
=>0,2x+0,4=0,5
=>0,2x=0,1
=>x=1/2
cho biểu thức A= (\(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\)) *\(\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
mọi người giúp em với, em cần gấp ạ, cảm ơn mọi người nhiều
1, \(\dfrac{1+2x}{3}\)= \(\dfrac{3-4y}{5}\)=\(\dfrac{2x-4y+4}{-16x}\) Tìm x, y
Cần gấp ạ , giúp mình nhanh với
Mọi người giúp em với ạ
tìm các số x,y,z biết:
a) \(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3}v\text{à}x-y+z=-15\)
b) \(\dfrac{x}{y}=\dfrac{7}{20};\dfrac{y}{z}=\dfrac{5}{8}v\text{à}2x+5y-2z=100\)
c)\(5x=8y=20zv\text{à}x-y-z=3\)
d)\(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}zv\text{à}-x+y+z=-120\)
a) \(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
⇒\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c: Ta có: 5x=8y=20z
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)
Do đó: x=24; y=15; z=6
1) Tìm x,y TM:
9^x-7^x=2^y
2) Giải pt:
\(\sqrt{x}+\sqrt{2-x}=\dfrac{2x}{\sqrt{2x-1}}\)
Mọi người giúp mình nhé =))
Mình làm câu 2 trước nhé:
đkxđ: \(\dfrac{1}{2}< x\le2\)
Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\) (1)
Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\) (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)
Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\)
Vậy pt đã cho có nghiệm duy nhất \(x=1\)
1) \(x+\sqrt{1-x^2}< x\sqrt{1-x^2}\)
2)\(\dfrac{1}{\sqrt{2x^2+3x-3}}>\dfrac{1}{2x-1}\)
3)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}< 2x+\dfrac{1}{2x}+4\)
giúp mình ạ