Tìm GTNN và GTLN của A= x2+y2 biết x2(x2+2y2 _3) + (y2_2)2 = 1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Bài 1: Tìm GTLN hoặc GTNN của biểu thức
a)A= -x2+2x+5
b)B= -x2-y2+4x+4y+2
c)C= x2+y2-2x+6y+12
\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)
dấu'=' xảy ra<=>x=1=>Max A=6
\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)
\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)
\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)
dấu"=" xảy ra<=>x=y=2=>Max B=10
\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
dấu'=' xảy ra<=>x=1,y=-3=>MinC=2
Cho 2 đại lương tỉ lệ nghịch x và y x1 và x2 là hai giá trị của x y1 y2 là hai giá trị của y
A biết x1 × y1 = 45 x2 = 9 tìm y2
B biết x1=2 ; x2= 4 ; y1 + y2 = 12 tính y1 và y2
C biết x2 = 3 ; x1 + 2y2 = 18 ;y1=12 tìm x1, y2
Giúp với
Tìm đa thức P và đa thức Q, biết:
P + (x2 – 2y2) = x2 - y2 + 3y2 – 1
P + (x2 – 2y2) = x2 - y2 + 3y2 – 1
⇒ P = (x2 – y2 + 3y2 – 1) – (x2 – 2y2)
= x2 – y2 + 3y2 – 1 – x2 + 2y2
= (x2 – x2) + ( – y2 + 3y2+ 2y2) – 1
= 0+ 4y2 – 1= 4y2 – 1.
Vậy P = 4y2 – 1.
tìm gtnn (gtln) của
a) 4x2+12x+1 b) 4x2-3x+10
c)2x2+5x+10 d) x-x2+2
e) 2x-2x2 f) 4x2+2y2+4xy+4y+5
a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)
\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)
\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)
c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)
\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)
d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)
\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a: Ta có: \(4x^2+12x+1\)
\(=4x^2+12x+9-8\)
\(=\left(2x+3\right)^2-8\ge-8\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
b: Ta có: \(4x^2-3x+10\)
\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)
\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)
\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)
c: Ta có: \(2x^2+5x+10\)
\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)
\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)
b1 cho hai đại lượng tỉ lệ nghịch x và y, x1 và x2 là 2 giá trị của x, y1,y2 là 2 giá trị của y a)biết x1=5,x2=2 và y1+y2=21. tính y1 và y2
b)biết x2 =-4,y1=-10và 3x1-2y2=32.tính x1 và y2
b2 cho hai đại lượng tỉ lệ nghịch x và y, x1 và x2 là hai giá trị của x, y1 và y2 là hai giá trị tương ứng của y: a) Biết x1=3, x2=2 và 2y1+3y2=-26. Tính y1 và y2.
b) Biết x2=-4, y1=-10 và 3x1-2y2=32. Tính x1 và y2.
giúp mình với nhé các bạn
cảm ơn các bạn trước
Bài 2. Cho biết x và y là hai đại lượng tỉ lệ nghịch và x1 và x2 là hai giá trị bất kì của x; y1 và y2 là hai giá trị tương ứng của y.
a)Biết x1y1 = -45 và x2 = 9, tính y2;
b)Biết x1 = 2; x2 = 4 và y1 + y2 = -12, tính y1, y2; c
)Biết x2 = 3, x1 + 2y2 = 18 và y1 =12, tính x1, y2.
CÁC BẠN GIÚP MÌNH NHANH VỚI
Bài 2. Cho biết x và y là hai đại lượng tỉ lệ nghịch và x1 và x2 là hai giá trị bất kì của x; y1 và y2 là hai giá trị tương ứng của y.
a)Biết x1y1 = -45 và x2 = 9, tính y2;
b)Biết x1 = 2; x2 = 4 và y1 + y2 = -12, tính y1, y2;
c)Biết x2 = 3, x1 + 2y2 = 18 và y1 =12, tính x1, y2.
a)xvà y tỷ lệ nghịch với nhau nên ta có: x1 y1=x2.y2
=>x1. 12 = 3 . y 2
= > y 2 = 4 x 1
M à : x 1 + 2 y 2 = 18
= > x 1 + 2 . 4 x 1 = 18
= > 9 x 1 = 18 = > x 1 = 2
= > y 2 = 4 . 2 = 8
v ậ y x 1 = 2 ; y 2 = 8
a, -x2 + 2x + 3
b, x2 - 2x + 4y2 - 4y + 8 c, -x2 - y2 + xy + 2x + 2y + 4 d, x2 + 5y2 - 4xy - 2y + 2015 e, 2x2 + y2 + 6x + 2y + 2xy + 2018A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2