Những câu hỏi liên quan
PQ
Xem chi tiết
AN
4 tháng 7 2017 lúc 8:31

a/ \(\frac{b}{b}.\sqrt{\frac{a^2+b^2}{2}}+\frac{c}{c}.\sqrt{\frac{b^2+c^2}{2}}+\frac{a}{a}.\sqrt{\frac{c^2+a^2}{2}}\)

\(\le\frac{1}{b}.\left(\frac{3b^2+a^2}{4}\right)+\frac{1}{c}.\left(\frac{3c^2+b^2}{4}\right)+\frac{1}{a}.\left(\frac{3a^2+c^2}{4}\right)\)

\(=\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\)

Ta cần chứng minh

\(\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\left(a+b+c\right)\)

Mà: \(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Vậy có ĐPCM.

Câu b làm y chang.

Bình luận (0)
BT
2 tháng 7 2017 lúc 10:37

hình như sai đề

Bình luận (0)
AN
3 tháng 7 2017 lúc 8:57

Còn cần bài giải không

Bình luận (0)
DP
Xem chi tiết
DP
18 tháng 2 2020 lúc 11:37

Giúp mình với

Bình luận (0)
 Khách vãng lai đã xóa
TL
12 tháng 4 2020 lúc 17:05

Chứng minh gì vậy bạn

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
HN
9 tháng 8 2016 lúc 18:45

\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}\right)^2}{\sqrt{a}}\)

Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)được \(\frac{\left(\sqrt{a}\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}\right)^2}{\sqrt{a}}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\)

Bình luận (0)
ML
9 tháng 8 2016 lúc 17:35

CM: \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)

Áp dụng bđt Côsi:

\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)

Tương tự \(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\)

Cộng theo vế và thu gọn, ta được đpcm.

Bình luận (0)
MD
9 tháng 8 2016 lúc 17:06

kết quả sẽ lafb/3

Bình luận (0)
DN
Xem chi tiết
KS
30 tháng 9 2019 lúc 17:27

Áp dụng BĐT Cauchy - Schwarz ta có  :

\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)

\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)

\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VF\)

Chúc bạn học tốt !!!

Bình luận (0)
H24
11 tháng 8 2020 lúc 15:43

Mình nghĩ là: 

a = 1

b = 2

c = 4

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NM
29 tháng 12 2019 lúc 22:05

Áp dụng bất đẳng thức Cauchy ta có :

\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)

\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)

\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)

\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)

\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VP\)

Bình luận (0)
 Khách vãng lai đã xóa
BC
Xem chi tiết
NL
22 tháng 6 2019 lúc 9:27

a/

\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)

b/

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

Bình luận (0)
FM
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết