\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x^3}{3x^2-4}-\dfrac{x^2}{3x+2}\right)\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{3x^3+1}-\sqrt{2x^2+x+1}}{\sqrt[4]{4x^4+2}}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2-3x+4}-2x}{\sqrt{x^2+x+1}-x}\)
Da nan roi mang meo lam mat het bai -.-
1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{\dfrac{3x^3}{x^3}+\dfrac{1}{x^3}}+\sqrt{\dfrac{2x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}{-\sqrt[4]{\dfrac{4x^4}{x^4}+\dfrac{2}{x^4}}}=\dfrac{-\sqrt[3]{3}-\sqrt{2}}{\sqrt[4]{4}}\)
2/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^7}{\left(-2x^7\right)}=-\dfrac{8}{2^7}\)
3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4x^2-3x+4-4x^2\right)\left(\sqrt{x^2+x+1}+x\right)}{\left(x^2+x+1-x^2\right)\left(\sqrt{4x^2-3x+4}+2x\right)}=\dfrac{-3.2}{2}=-3\)
Tính các giới hạn :
a) \(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x^3}{3x^2-4}-\dfrac{x^2}{3x+2}\right)\)
b) \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{9x^2+1}-3x\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{2x^2-3}-5x\right)\)
d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{2x^2+3}}{4x+2}\)e) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{2x^2+3}}{4x+2}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(\sqrt{x^2+1}+x\right)^n-\left(\sqrt{x^2+1}-x\right)^n}{x}\)
Lời giải:
a) \(\lim\limits_{x\to -\infty}\frac{x+3}{3x-1}=\lim\limits_{x\to -\infty}\frac{1+\frac{3}{x}}{3-\frac{1}{x}}=\frac{1}{3}\)
b)
\(\lim\limits_{x\to +\infty}\frac{(\sqrt{x^2+1}+x)^n-(\sqrt{x^2+1}-x)^n}{x}=\lim\limits_{x\to +\infty} 2[(\sqrt{x^2+1}+x)^{n-1}+(\sqrt{x^2+1}+x)^{n-1}(\sqrt{x^2+1}-x)+....+(\sqrt{x^2+1}-x)^{n-1}]\)
\(=+\infty\)
\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)
\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)
\(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+1}-x\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
Em là tám lại ạ
Em là duy khôi ạ
Em là văn tam ạ
Em là mạnh Tuấn ạ
a: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x+4-12}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x-8}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x+4}{x^2+2x+4}\)
\(=\dfrac{2+4}{2^2+2\cdot2+4}=\dfrac{6}{4+4+4}=\dfrac{6}{12}=\dfrac{1}{2}\)
b: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{x-3+x-1}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2x-4}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2}{\left(x-3\right)\left(x-1\right)}=\dfrac{2}{\left(2-3\right)\left(2-1\right)}=-2\)
d: \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-x+x-\sqrt[3]{x^3-1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}+\dfrac{x^3-x^3+1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{x^2+1}+x}+\dfrac{1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\dfrac{1}{x}}{\sqrt{1+\dfrac{1}{x^2}}+1}+\dfrac{\dfrac{1}{x^2}}{\sqrt[3]{\dfrac{1}{x^4}}+\sqrt[3]{1-\dfrac{1}{x^3}}+\sqrt[3]{\left(1-\dfrac{1}{x^3}\right)^2}}\right)\)
=0
c: \(\lim\limits_{x\rightarrow+\infty}\left[x\cdot\left(\sqrt{x^2+1}-x\right)\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x}{\sqrt{x^2+1}+x}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
e: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{x^2+1-1}{\sqrt{x^2+1}+1}:\dfrac{x^2+16-16}{\sqrt{x^2+16}+4}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+16}+4}{\sqrt{x^2+1}+1}=\dfrac{4+4}{1+1}=\dfrac{8}{2}=4\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{x^2+x+1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{3x+1}{3x^2-x+5}\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x+5}{\sqrt{x^2+x}}\)
d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{-5x+1}{\sqrt{3x^2+1}}\)
`a)lim_{x->+oo}[x+1]/[x^2+x+1]`
`=lim_{x->+oo}[1/x+1/[x^2]]/[1+1/x+1/[x^2]]`
`=0`
`b)lim_{x->+oo}[3x+1]/[3x^2-x+5]`
`=lim_{x->+oo}[3/x+1/[x^2]]/[3-1/x+5/[x^2]]`
`=0`
`c)lim_{x->-oo}[3x+5]/[\sqrt{x^2+x}]`
`=lim_{x->-oo}[3+5/x]/[-\sqrt{1+1/x}]`
`=-3`
`d)lim_{x->+oo}[-5x+1]/[\sqrt{3x^2+1}]`
`=lim_{x->+oo}[-5+1/x]/[\sqrt{3+1/[x^2]}]`
`=-5/3`
Tìm các giới hạn sau :
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}\)
c) \(\lim\limits_{x\rightarrow4^-}\dfrac{2x-5}{x-4}\)
d) \(\lim\limits_{x\rightarrow+\infty}\left(-x^3+x^2-2x+1\right)\)
e) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
f) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+2}-x\right)\)
b, \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^2-4x+6}{x-2}\)
a: \(\lim\limits_{x\rightarrow+\infty}\left[x\left(\sqrt{x^2+2}-x\right)\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+2-x^2}{\sqrt{x^2+2}+x}\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x}{\sqrt{x^2+2}+x}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2}{\sqrt{1+\dfrac{2}{x^2}}+1}=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)
b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^2-4x+6}{x-2}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2\left(3-\dfrac{4}{x}+\dfrac{6}{x^2}\right)}{x\left(1-\dfrac{2}{x}\right)}\)
\(=\lim\limits_{x\rightarrow-\infty}\left[x\cdot\dfrac{3-\dfrac{4}{x}+\dfrac{6}{x^2}}{1-\dfrac{2}{x}}\right]\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}x=-\infty\\\lim\limits_{x\rightarrow-\infty}\dfrac{3-\dfrac{4}{x}+\dfrac{6}{x^2}}{1-\dfrac{2}{x}}=\dfrac{3-0+0}{1-0}=\dfrac{3}{1}=3>0\end{matrix}\right.\)
Các bạn tính giúp mình mấy câu này với:
1. \(\lim\limits_{x\rightarrow\left(-1\right)-}\dfrac{\sqrt{x^2-3x-4}}{1-x^2}\)
2. \(\lim\limits_{x\rightarrow2^+}\left(\dfrac{1}{x-2}-\dfrac{x+1}{\sqrt{x+2}-2}\right)\)
3. \(\lim\limits_{x\rightarrow+\infty}\dfrac{3x^2-5sin2x+7cos^2x}{2x^2+2}\)
4. \(\lim\limits_{x\rightarrow+\infty}\left(x.sin\left(\dfrac{1}{3x}\right)\right)\)
5. \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{2x+1}.\sqrt[3]{3x+1}.\sqrt[4]{4x+1}-1}{x}\)
6. \(\lim\limits_{x\rightarrow0}\left(\dfrac{\sqrt{9x+4}-\sqrt[3]{4x^{^2}+8}}{sinx}\right)\)
1.
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)
\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)
2.
\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:
\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)
3.
\(\lim\limits_{x\to +\infty}\frac{3x^2-5\sin 2x+7\cos ^2x}{2x^2+2}=\lim\limits_{x\to +\infty}\frac{3x^2-5\sin 2x+7(1-\sin ^2x)}{2x^2+2}\)
\(=\lim\limits_{x\to +\infty}\frac{3(x^2+1)-5\sin 2x+4-7\sin ^2x}{2x^2+2}\)
\(=\lim\limits_{x\to +\infty}\left[\frac{3}{2}-5.\frac{\sin 2x}{2x}.\frac{2x}{2x^2+2}+\frac{2}{x^2+1}-7.(\frac{\sin x}{x})^2.\frac{x^2}{2x^2+2}\right]\)
\(=\frac{3}{2}-5.0.0+0-7.0.\frac{1}{2}=\frac{3}{2}\) (nhớ rằng \(\lim\limits_{t\to \infty}\frac{\sin t}{t}=0\))
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+1}}\)
\(\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
1/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x}{x}-\sqrt{\dfrac{3x^2}{x^2}+\dfrac{2}{x^2}}}{\dfrac{5x}{x}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}}=\dfrac{2-\sqrt{3}}{5+1}=\dfrac{2-\sqrt{3}}{6}\)
2/ \(=\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{\dfrac{x^2}{x^4}+\dfrac{1}{x^4}}{\dfrac{2x^4}{x^4}+\dfrac{x^2}{x^4}-\dfrac{3}{x^4}}}=0\)
3/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt[3]{\dfrac{x^6}{x^6}+\dfrac{x^4}{x^6}+\dfrac{1}{x^6}}}{\sqrt{\dfrac{x^4}{x^4}+\dfrac{x^3}{x^4}+\dfrac{1}{x^4}}}=-1\)