\(\lim\limits_{x\rightarrow\pm\infty}\dfrac{x}{1+\left|x\right|}\)
\(\lim\limits_{x\rightarrow-\infty}\left(x-\sqrt{x^2+x+1}\right)\)
\(\lim\limits_{x\rightarrow\pm\infty}\left(\sqrt{x^2+3x+1}-\sqrt{x^2-x+1}\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{8x^3+2x}-2x\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[4]{16x^4+3x+1}-\sqrt{4x^2+2}\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}+\sqrt{x^2-x}-2x\right)\)
1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2-x^2-x-x}{x+\sqrt{x^2+x+1}}=\dfrac{-2}{1-1}=-\infty\)
2/ tien toi +- vo cung?
3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^3+2x-8x^3}{\sqrt[3]{\left(8x^3+2x\right)^2}+2x.\sqrt[3]{8x^3+2x}+4x^2}=\dfrac{\dfrac{2x}{x^2}}{\dfrac{4x^2}{x^2}+\dfrac{4x^2}{x^2}+\dfrac{4x^2}{x^2}}=0\)
4/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{16x^4+3x+1-16x^4}{\sqrt[4]{\left(16x^4+3x+1\right)^3}+2x.\sqrt[4]{\left(16x^4+3x+1\right)^2}+4x^2.\sqrt[4]{16x^4+3x+1}+8x^3}+\lim\limits_{x\rightarrow+\infty}\dfrac{4x^2-4x^2-2}{2x+\sqrt{4x^2+2}}=\dfrac{\dfrac{3x}{x^3}}{8+8+8+8}-\dfrac{\dfrac{2}{x}}{2+2}=0\)
5/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}+\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-x-x^2}{\sqrt{x^2-x}+x}=\dfrac{\dfrac{1}{x}}{1+1}-\dfrac{\dfrac{x}{x}}{1+1}=-\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{3x^3+1}-\sqrt{2x^2+x+1}}{\sqrt[4]{4x^4+2}}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2-3x+4}-2x}{\sqrt{x^2+x+1}-x}\)
Da nan roi mang meo lam mat het bai -.-
1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{\dfrac{3x^3}{x^3}+\dfrac{1}{x^3}}+\sqrt{\dfrac{2x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}{-\sqrt[4]{\dfrac{4x^4}{x^4}+\dfrac{2}{x^4}}}=\dfrac{-\sqrt[3]{3}-\sqrt{2}}{\sqrt[4]{4}}\)
2/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^7}{\left(-2x^7\right)}=-\dfrac{8}{2^7}\)
3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4x^2-3x+4-4x^2\right)\left(\sqrt{x^2+x+1}+x\right)}{\left(x^2+x+1-x^2\right)\left(\sqrt{4x^2-3x+4}+2x\right)}=\dfrac{-3.2}{2}=-3\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2-2}+\sqrt[3]{x^3+1}}{\sqrt{x^2+1}-x}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2x+3}{\sqrt{2x^2-3}}\)
\(\lim\limits_{x\rightarrow\pm\infty}\dfrac{2x^2-1}{3-x^2}\)
a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x\sqrt{\dfrac{4x^2}{x^2}-\dfrac{2}{x^2}}-x\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{1}{x^3}}}{-x\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}-x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{4}-1}{-1-1}=\dfrac{3}{2}\)
b/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{2x}{x}+\dfrac{3}{x}}{-\sqrt{\dfrac{2x^2}{x^2}-\dfrac{3}{x^2}}}=\dfrac{2}{-\sqrt{2}}=-\sqrt{2}\)
c/ \(\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{2x^2}{x^2}-\dfrac{1}{x^2}}{\dfrac{3}{x^2}-\dfrac{x^2}{x^2}}=\dfrac{2}{-1}=-2\)
Tìm các giới hạn sau:
\(\lim\limits_{x\rightarrow-\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow+\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow-\infty}\) \(\left(\sqrt{2\text{x}^2+1}+x\right)\)
\(\lim\limits_{x\rightarrow1}\) \(\dfrac{2\text{x}^3-5\text{x}-4}{\left(x+1\right)^2}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(\sqrt{x^2+1}+x\right)^n-\left(\sqrt{x^2+1}-x\right)^n}{x}\)
Lời giải:
a) \(\lim\limits_{x\to -\infty}\frac{x+3}{3x-1}=\lim\limits_{x\to -\infty}\frac{1+\frac{3}{x}}{3-\frac{1}{x}}=\frac{1}{3}\)
b)
\(\lim\limits_{x\to +\infty}\frac{(\sqrt{x^2+1}+x)^n-(\sqrt{x^2+1}-x)^n}{x}=\lim\limits_{x\to +\infty} 2[(\sqrt{x^2+1}+x)^{n-1}+(\sqrt{x^2+1}+x)^{n-1}(\sqrt{x^2+1}-x)+....+(\sqrt{x^2+1}-x)^{n-1}]\)
\(=+\infty\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-x+1}-x\right)\)
\(\lim\limits_{x\rightarrow-\infty}x\left(\sqrt{4x^2+1}-x\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(4x^5-3x^3+x+1\right)\)
\(\lim\limits_{x\rightarrow+\infty}\sqrt{x^4-x^3+x^2-x}\)
Hic nan qua :( Lam vay
P/s: Anh Lam check all ho em nhung bai em lam nhe :( Em cam on
1/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}=\dfrac{-1}{1+1}=-\dfrac{1}{2}\)
2/ \(=\lim\limits_{x\rightarrow-\infty}x\left(\dfrac{4x^2+1-x^2}{\sqrt{4x^2+1}+x}\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{x}{x}}{-\sqrt{\dfrac{4x^2}{x^2}+\dfrac{1}{x^2}}+\dfrac{x}{x}}=\dfrac{1}{-2+1}=-1\)
3/ \(=\lim\limits_{x\rightarrow-\infty}x^5\left(4-\dfrac{3}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^5}\right)=-\infty\)
4/ \(=\lim\limits_{x\rightarrow+\infty}\sqrt{x^4}\left(\sqrt{1-\dfrac{x^3}{x^4}+\dfrac{x^2}{x^4}-\dfrac{x}{x^4}}\right)=+\infty\)
1, Tính:
a, \(\lim\limits_{x\rightarrow-2}\dfrac{x^3+2x^2}{\sqrt{x^2+4x+4}}\)
b, \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x+\sqrt{x+1}}-\sqrt{x}\right)\)
c, \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x}+1+\sqrt[3]{x^3+2}\right)\)
\(\lim\limits_{x\rightarrow-2}\dfrac{x^3+2x^2}{\sqrt{x^2+4x+4}}=\lim\limits_{x\rightarrow-2}\dfrac{x^2\left(x+2\right)}{\sqrt{\left(x+2\right)^2}}\)
\(=\lim\limits_{x\rightarrow-2}x^2=\left(-2\right)^2=4\)
p/s: bài này mình chưa học trên lớp nên ko chắc 100% đúng
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x+1}}{\sqrt{x+\sqrt{x+1}}+\sqrt{x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x}}}{\sqrt{1+\sqrt{\dfrac{1}{x}+\dfrac{1}{x^2}}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
Câu c số 1 trong hay ngoài căn nhỉ?
Tính giới hạn sau:
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{1}{n^3}\left(1+2^2+...+\left(n-1\right)^2\right)\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{1}{n}[\left(x+\dfrac{a}{n}\right)+\left(x+\dfrac{2a}{n}\right)+...+\left(x+\dfrac{\left(n-1\right)a}{n}\right)]\)
3) \(\lim\limits_{n\rightarrow\infty}\dfrac{1^3+2^3+...+n^3}{n^4}\)
1.
Trước hết bạn nhớ công thức:
$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)
Áp vào bài:
\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)
\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)
\(=1.\frac{1}{3}=\frac{1}{3}\)
2.
\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)
\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)
\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)
\(=x+a\)
3.
Trước tiên ta có công thức:
$1^3+2^3+....+n^3=(1+2+3+...+n)^2=\frac{n^2(n+1)^2}{4}$
Chứng minh: https://diendantoanhoc.org/topic/81694-t%C3%ADnh-t%E1%BB%95ng-s-13-23-33-n3/
Khi đó:
\(\lim \frac{1^3+2^3+...+n^3}{n^4}=\lim \frac{n^2(n+1)^2}{4n^4}\\ =\lim \frac{(n+1)^2}{4n^2}=\frac{1}{4}\lim (1+\frac{1}{n})^2=\frac{1}{4}.1=\frac{1}{4}\)
Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow0^-}\dfrac{2\left|x\right|+x}{x^2-x}\)
b) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x}-\sqrt{x^2-1}\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)
\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)
b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)
\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)