Những câu hỏi liên quan
TK
Xem chi tiết
NT
24 tháng 11 2023 lúc 19:21

\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{4x+5}-2x-3}{\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{4x+5-\left(2x+3\right)^2}{\sqrt{4x+5}+2x+3}\cdot\dfrac{1}{\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\left(\dfrac{4x+5-4x^2-12x-9}{\left(\sqrt{4x+5}+2x+3\right)\cdot\left(x+1\right)^2}\right)\)

\(=\lim\limits_{x\rightarrow-1}\left(\dfrac{-4x^2-8x-4}{\left(\sqrt{4x+5}+2x+3\right)\cdot\left(x+1\right)^2}\right)\)

\(=\lim\limits_{x\rightarrow-1}\left(\dfrac{-4\left(x^2+2x+1\right)}{\left(x+1\right)^2\cdot\left(\sqrt{4x+5}+2x+3\right)}\right)\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{-4}{\sqrt{4x+5}+2x+3}\)

\(=\dfrac{-4}{\sqrt{-4+5}-2+3}=\dfrac{-4}{1+1}=-\dfrac{4}{2}=-2\)

Bình luận (0)
LA
Xem chi tiết
NL
10 tháng 3 2021 lúc 7:30

Chọn \(f\left(x\right)=5x+5\)

Khi đó: \(\lim\limits_{x\rightarrow1}\dfrac{5x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{20x+29}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{5\left(\sqrt{x}+1\right)}{\sqrt{20x+29}+3}=\dfrac{10}{7+3}=1\)

Bình luận (0)
DD
Xem chi tiết
HH
9 tháng 2 2021 lúc 19:18

Da nan roi mang meo lam mat het bai -.-

1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{\dfrac{3x^3}{x^3}+\dfrac{1}{x^3}}+\sqrt{\dfrac{2x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}{-\sqrt[4]{\dfrac{4x^4}{x^4}+\dfrac{2}{x^4}}}=\dfrac{-\sqrt[3]{3}-\sqrt{2}}{\sqrt[4]{4}}\)

2/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^7}{\left(-2x^7\right)}=-\dfrac{8}{2^7}\)

3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4x^2-3x+4-4x^2\right)\left(\sqrt{x^2+x+1}+x\right)}{\left(x^2+x+1-x^2\right)\left(\sqrt{4x^2-3x+4}+2x\right)}=\dfrac{-3.2}{2}=-3\)

 

Bình luận (0)
TT
Xem chi tiết
MM
Xem chi tiết
NL
23 tháng 3 2021 lúc 23:09

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1+1-\sqrt[]{1-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{x}{1+\sqrt[]{1-x}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[3]{\left(x+1\right)^3}+\sqrt[3]{x+1}+1}+\dfrac{1}{1+\sqrt[]{1-x}}\right)=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)

Bình luận (0)
TC
Xem chi tiết
GD
7 tháng 3 2021 lúc 13:24

Với -1<x<0 ta có:

\(\left(x^3+1\right)\sqrt{\dfrac{3x}{x^2-1}}=\left(x+1\right)\left(x^2-x+1\right)\sqrt{\dfrac{3x}{\left(x-1\right)\left(x+1\right)}}\)

\(=\sqrt{x+1}\left(x^2-x+1\right)\sqrt{\dfrac{3x}{x-1}}\)

\(\Rightarrow\lim\limits_{x\rightarrow\left(-1\right)^+}\left(x^3+1\right)\sqrt{\dfrac{3x}{x^2-1}}=0\)

Bình luận (1)
TL
Xem chi tiết
AH
14 tháng 5 2021 lúc 0:30

Lời giải:

a) \(\lim\limits_{x\to -\infty}\frac{x+3}{3x-1}=\lim\limits_{x\to -\infty}\frac{1+\frac{3}{x}}{3-\frac{1}{x}}=\frac{1}{3}\)

b) 

\(\lim\limits_{x\to +\infty}\frac{(\sqrt{x^2+1}+x)^n-(\sqrt{x^2+1}-x)^n}{x}=\lim\limits_{x\to +\infty} 2[(\sqrt{x^2+1}+x)^{n-1}+(\sqrt{x^2+1}+x)^{n-1}(\sqrt{x^2+1}-x)+....+(\sqrt{x^2+1}-x)^{n-1}]\)

\(=+\infty\)

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 12 2023 lúc 10:18

\(\lim\limits_{x\rightarrow\left(-2\right)^+}\dfrac{\sqrt{8+2x}-2}{\sqrt{x+2}}\)

\(=\lim\limits_{x\rightarrow-2^+}\dfrac{2x+8-4}{\left(\sqrt{2x+8}+2\right)\cdot\sqrt{x+2}}\)

\(=\lim\limits_{x\rightarrow-2^+}\dfrac{2\cdot\sqrt{x+2}}{\sqrt{2x+8}+2}=\dfrac{2\cdot\sqrt{-2+2}}{\sqrt{2\cdot\left(-2\right)+8}+2}\)

=0

Bình luận (0)
H24
Xem chi tiết
NL
23 tháng 1 2021 lúc 21:06

Do \(\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5\) hữu hạn nên \(2f\left(x\right)+1=0\) phải có nghiệm \(x=-1\)

\(\Leftrightarrow2f\left(-1\right)=-1\Leftrightarrow f\left(-1\right)=-\dfrac{1}{2}\)

Đoạn dưới tự hiểu là \(\lim\limits_{x\rightarrow-1}\) (vì kí tự lim rất rắc rối)

\(I=\dfrac{\left[4f\left(x\right)+3\right]\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}-2\right]+2\left[4f\left(x\right)+3\right]-2}{x^2-1}\)

\(=\dfrac{\left[4f\left(x\right)+3\right]\left[4f^2\left(x\right)+2f\left(x\right)\right]}{\left(x+1\right)\left(x-1\right)\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}+2\right]}+\dfrac{4\left[2f\left(x\right)+1\right]}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{f\left(x\right).\left[4f\left(x\right)+3\right]}{x-1}+\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{4}{x-1}\)

\(=5.\dfrac{f\left(-1\right).\left[4f\left(-1\right)+3\right]}{-2}+5.\dfrac{4}{-2}=\dfrac{5.\left(-\dfrac{1}{2}\right)\left(-2+3\right)}{-2}+5.\dfrac{4}{-2}=...\)

Bình luận (3)