hãy chứng minh điều sau: tan a = sin a / cos a
hãy chứng minh điều sau : sin2a + cos2a = 1
sin2a+cos2a=\(\left(\frac{AC}{BC}\right)^2+\left(\frac{AB}{BC}\right)^2=\frac{AC^2}{BC^2}=\frac{AB^2}{BC^2}=\frac{AC^2+AB^2}{BC^2}=\frac{BC^2}{BC^2}=1\)
=> đpcm
Chứng minh rằng: Sin(45+a)-cos(45+a)/Sin(45+a)+cos(45+a)=tan a
Nếu được sử dụng công thức: \(sinx+cosx=\sqrt{2}sin\left(x+45^0\right)\) thì:
\(\frac{sin\left(45+a\right)-cos\left(45+a\right)}{sin\left(45+a\right)+cos\left(45+a\right)}=\frac{\sqrt{2}sin\left(45+a-45\right)}{\sqrt{2}sin\left(45+a+45\right)}=\frac{sina}{sin\left(90+a\right)}=\frac{sina}{cosa}=tana\)
Ko được sử dụng thì:
\(\frac{sin\left(45+a\right)-cos\left(45+a\right)}{sin\left(45+a\right)+cos\left(45+a\right)}=\frac{sin45.cosa+cos45.sina-cos45.cosa+sin45.sina}{sin45.cosa+cos45.sina+cos45.cosa-sin45.sina}\)
\(=\frac{\frac{\sqrt{2}}{2}cosa+\frac{\sqrt{2}}{2}sina-\frac{\sqrt{2}}{2}cosa+\frac{\sqrt{2}}{2}sina}{\frac{\sqrt{2}}{2}cosa+\frac{\sqrt{2}}{2}sina+\frac{\sqrt{2}}{2}cosa-\frac{\sqrt{2}}{2}sina}=\frac{\sqrt{2}sina}{\sqrt{2}cosa}=tana\)
Chứng minh rằng (tan a)/(sin a) - (sin a)/(cot a) = cos a
\(\dfrac{tana}{sina}-\dfrac{sina}{cota}\)
\(=\dfrac{1}{cosa}-\dfrac{sina}{\dfrac{cosa}{sina}}=\dfrac{1}{cosa}-\dfrac{sin^2a}{cosa}\)
\(=\dfrac{cos^2a}{cosa}=cosa\)
chứng minh các tslg sau
a) tan α = \(\dfrac{sin a}{cos a}\)
b)cot a = \(\dfrac{cos a}{sin a}\)
c)tan a . cot a = 1
a)theo tỉ số lượng giác ta có: tan a= AC/AB (1)
sin a= AC/BC
cos a= AB/BC
-> sin a * cos a= AC/BC : BC/AB= AC/AB (2)
Từ (1) (2) ta có tan a = sina / cos a
cho tam giác ABC .chứng minh
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+sin\frac{B}{2}cos\frac{C}{2}cos\frac{A}{2}+sin\frac{C}{2}cos\frac{A}{2}cos\frac{B}{2}=sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}+tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}\)
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
trinh le na
cho bạn 4 năm nữa cũng chưa hiểu đâu
Chứng minh các hệ thức sau :
a) \(\dfrac{1-2\sin^2a}{1+\sin2a}=\dfrac{1-\tan a}{1+\tan a}\)
b) \(\dfrac{\sin a+\sin3a+\sin5a}{\cos a+\cos3a+\cos5a}=\tan3a\)
c) \(\dfrac{\sin^4a-\cos^4a+\cos^2a}{2\left(1-\cos a\right)}=\cos^2\dfrac{a}{2}\)
d) \(\dfrac{\tan2x.\tan x}{\tan2x-\tan x}=\sin2x\)
Chứng minh các đẳng thức sau(giả sử các biểu thức sau đều có nghĩa)
a) $\sin ^{4} x+\cos ^{4} x=1-2 \sin ^{2} x \cdot \cos ^{2} x$.
b) $\dfrac{1+\cot x}{1-\cot x}=\dfrac{\tan x+1}{\tan x-1}$.
c) $\dfrac{\cos x+\sin x}{\cos ^{3} x}=\tan ^{3} x+\tan ^{2} x+\tan x+1$.
\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\)
\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)
a)
b)
c)
a) VT=(sin2x + cos 2 x)2 - 2sin2 x . cos2 x = VP
b) VT= \(\dfrac{1+\dfrac{1}{tanx}}{1-\dfrac{1}{tanx}}\)=VP
c) VT= \(\dfrac{1}{cos^2x}+\dfrac{sinx}{cosx}.\dfrac{1}{cos^2x}=1+tan^2x+tanx.\left(1+tan^2x\right)=VP\)
Cho: cosa, cosb ≠ 0, chứng minh đẳng thức: \(\frac{\sin\left(a+b\right).\sin\left(a-b\right)}{\cos^2a.\cos^2b}=\tan^2a-\tan^2b\)
Chứng minh đẳng thức:
a, \(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
b, \(\tan a.\tan b=\dfrac{\tan a+\tan b}{\cot a+\cot b}\)
a/ \(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
\(\Leftrightarrow-2\cos^2x+2\cos x-2\cos x+2\cos^2x=0\)
\(\Leftrightarrow0=0\) (đúng)
\(\RightarrowĐPCM\)
b/ \(\tan a.\tan b=\dfrac{\tan a+\tan b}{\cot a+\cot b}\)
\(\Leftrightarrow\tan a.\tan b.\left(\cot a+\cot b\right)=\tan a+\tan b\)
\(\Leftrightarrow\tan a.\tan b.\cot a+\tan a.\tan b.\cot b=\tan a+\tan b\)
\(\Leftrightarrow\tan b+\tan a=\tan a+\tan b\) (đúng)
\(\RightarrowĐPCM\)