Cho nửa đường tròn $(O ; R)$, đường kính $A B$. Trên tia tiếp tuyến kẻ từ $A$ của nửa đường tròn này lấy $C$ sao cho $A C>R .$ Từ $C$ kẻ tiếp thứ hai $C D$ của nửa đường tròn $(O ; R)$, với $D$ là tiếp Gọi $H$ là giao điểm của $A D$ và $O C$.
1) Chứng minh: $A C D O$ là tứ giác nội tiếp.
2) $B C$ cắt đường tròn $(O ; R)$ tại điểm thứ hai là $M$. Chứng minh: $C D^{2}=C M . C B .$
3) Gọi K là giao điểm của AD và BC. Chứng minh \(\widehat{MHC}=\widehat{CBO}\) và \(\dfrac{CM}{CB}=\dfrac{KM}{KB}\).