Cho tam giac ABC Vuong tai A , duong cao AH , Biet AB=15 HB=9 Hay tinh do dai cac can con lai!
cho tam giaac abc can tai a .ve ah vuong goc voi bc tai h co ab = 5 cm , bc =6cm
a )chung minh 2 tam giac abh =ach
b ) tinh do dai ah
c) hay cho biet trong tam giac tren ahla duong nao trong cac duong con lai : duong trung tuyn , duong cao, duong phan giac , duong trung truc
(ve hinh giup mk luon nha . can gap . cam on nhiu)
a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH, ta có:
AH là cạnh chung
AB=AC (gt)
Do đó: \(\Delta\)ABH=\(\Delta\)ACH (c.h-c.g.v)
\(\Rightarrow\) BH=HC (2 cạnh tương ứng)
Vậy BH=HC=BC:2=3cm
b) Áp dụng định lý PI-TA-GO vào \(\Delta\)vuông ABH, ta có:
\(AH^2+BH^2=AB^2\)
\(AH^2+3^2=5^2\)
\(AH^2=16\)
\(AH=4cm\)
c) Ta có: \(\widehat{A}_1=\widehat{A_2}\) (\(\Delta ABH=\Delta ACH\))
\(\Rightarrow\) AH là đường phân giác. (*)
Ta lại có: BH=CH (c/m trên)
\(\Rightarrow\) AH là đường trung tuyến. (**)
Từ (*) và (**), ta có:
AH thoả mãn 2 trong 4 loại đường.
\(\Rightarrow\) AH vừa là đường trung trực, trung tuyến, đường cao, phân giác
cho tam giac ABC vuong tai,duong cao AH,biet HB=25cm,HC=36cm,AH=30cm.
a/ chung minh tam giac HBA dong dang voi tam giac HAC.
b/tinh do dai cac doan thang AB,BC,AC
a) Ta có: \(\widehat{HAB}+\widehat{HBA}=90^0\)
\(\widehat{HAB}+\widehat{HAC}=90^0\)
suy ra: \(\widehat{HBA}=\widehat{HAC}\)
Xét 2 tam giác vuông: \(\Delta HBA\) và \(\Delta HAC\) có:
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{HBA}=\widehat{HAC}\) (CMT)
suy ra: \(\Delta HBA~\Delta HAC\)
b) \(BC=BH+HC=25+36=61\)cm
\(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)
suy ra: \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm
\(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm
p/s: tham khảo
cho tam giac ABC vuong tai,duong cao AH,biet HB=25cm,HC=36cm,AH=30cm.
a/ chung minh tam giac HBA dong dang voi tam giac HAC.
b/tinh do dai cac doan thang AB,BC,AC
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: \(BC=HB+HC=61\left(cm\right)\)
\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)
\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)
1. Cho tam giac ABC vuong tai A duong cao AH.
a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;
b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.
2. Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.
3. Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.
a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;
b) Tinh do dai cac doan thang BH, CH.
4. Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang
duong cao do chia ra tren canh huyen
5. Cho mot tam giac vuong, biet ti so hai canh goc vuong la \(\frac{5}{12}\), canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua
canh goc vuong tren canh huyen.
6. Cho tam giac ABC vuong tai A. Biet \(\frac{AB}{AC}=\frac{5}{7}\), duong cao AH= 15cm. Tinh HB, HC.
7. Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua
hinh thang ABCD
8. Cho tam giac ABC vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.
9. Cho tam giac ABC vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm. Tinh do dai cac doan BH, HC.
10. Cho tam giac ABC vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, \(\frac{HB}{HC}=\frac{1}{4}\).
11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheo AC va BD vuong goc voi nhau o O.
a) Tinh do dai cac doan OB, OD;
b) Tinh do dai duong cheo AC;
c) Tinh dien tich hinh thang ABCD
trời ơi nhiều quá sao làm nổi nhìn thấy chán
1. Cho tam giac ABC vuong tai A duong cao AH.
a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;
b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.
2. Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.
3. Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.
a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;
b) Tinh do dai cac doan thang BH, CH.
4. Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang
duong cao do chia ra tren canh huyen
5. Cho mot tam giac vuong, biet ti so hai canh goc vuong la $\frac{5}{12}$512 , canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua
canh goc vuong tren canh huyen.
6. Cho tam giac ABC vuong tai A. Biet $\frac{AB}{AC}=\frac{5}{7}$ABAC =57 , duong cao AH= 15cm. Tinh HB, HC.
7. Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua
hinh thang ABCD
8. Cho tam giac ABC vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.
9. Cho tam giac ABC vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm.Tinh do dai cac doan BH, HC.
10. Cho tam giac ABC vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, $\frac{HB}{HC}=\frac{1}{4}$HBHC =14 .
11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheoAC va BD vuong goc voi nhau o O.
a) Tinh do dai cac doan OB, OD;
b) Tinh do dai duong cheo AC;
c) Tinh dien tich hinh thang ABCD
Bạn học lớp 9 mà đúng ko...mấy bài này áp dụng hệ thức lượng trong tam giác vuông và vài bài có tính chất đường phân giác là ra thoy
cho tam giac ABC vuong tai A. duong cao tai AH,duong phan giac BD biet AB 3cm,AC 4cm.
a) tinh do dai doan AD va DC
b) goi k la giao diem cua AH va BD (CM : AB.BK=BD.HB)
c) CM tam AKD Can.
mình mới có hc lớp 6 à hihi!!!!!
cho tam giac ABC vuong tai A, duong cao AH ( H thuoc BC). Biet BC=18cm, BH = 6cm.tinh do dai cac canh AB,AC
vì tam giác ABC vuông tại A, đường cao AH
=> AC=BC*CH=18*(18-6)=216
và AB=BC*BH=18*6=108
(áp dụng định lí phần hệ thức lượng trong tam giác vuông)
mik nhầm phải là
AC^2=BC*CH=216
=> AC=\(\sqrt{216}\)
và AB^2=BC*BH
=> AB=\(\sqrt{108}\)
THẾ này mới đúng nha bạn
cho tam giac ABC vuong tai A duong cao AH. Biet AB=4cm, AC=7,5cm. Tinh HB, HC
Cho tam giac ABC can tai A co truc tam H nam ben trong tam giac. Biet HA = 3,094, HB = 6,630. Tinh do dai duong cao AD cua tam giac ABC.
Cho tam gia ABC vuong tai B. Ve duong cao BH. tim so do cac goc cua tam giac ABC biet HC-HB=AB
nao giai duoc nhanh va dung nhat cho 10 cai k thiet!
tham khảo https://olm.vn/hoi-dap/detail/90247496237.html
https://olm.vn/hoi-dap/tim-kiem?q=+++++++++++cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+B,+%C4%91%C6%B0%E1%BB%9Dng+cao+BE.T%C3%ACm+s%E1%BB%91+%C4%91o+c%C3%A1c+g%C3%B3c+nh%E1%BB%8Dn+c%E1%BB%A7a+tam+gi%C3%A1c+bi%E1%BA%BFt+EC+-+EA+=+AB&id=425372
bn vào link đó nha