Những câu hỏi liên quan
QE
Xem chi tiết
NL
27 tháng 6 2021 lúc 8:19

\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)

\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

\(C=\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)

Bình luận (0)
NL
27 tháng 6 2021 lúc 8:29

\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)

\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}\)

C=\(\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)

Bình luận (0)
NM
Xem chi tiết
NT
13 tháng 5 2022 lúc 21:18

a.\(\sqrt{\left(\sqrt{7}-1\right)^2}=\left|\sqrt{7}-1\right|=\sqrt{7}-1\)

b.\(\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

c.\(\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{2}=\left|\sqrt{2}+5\right|-\sqrt{2}=\sqrt{2}+5-\sqrt{2}=5\)

d.\(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-6\right)^2}=\left|3+\sqrt{5}\right|+\left|\sqrt{5}-6\right|=3+\sqrt{5}+6-\sqrt{5}=9\)

Bình luận (0)
NT
13 tháng 5 2022 lúc 21:19

a: \(=\sqrt{7}-1\)

b: \(=2-\sqrt{3}\)

c: \(=5+\sqrt{2}-\sqrt{2}=5\)

d: \(=3+\sqrt{5}+6-\sqrt{5}=9\)

Bình luận (0)
TC
13 tháng 5 2022 lúc 21:19

a)\(=\sqrt{7}-1\)

b)\(=2-\sqrt{3}\)

c)\(=\sqrt{2}+5-\sqrt{2}=5\)

d)\(=3+\sqrt{5}+\sqrt{5}+6=9\)

Bình luận (1)
TC
Xem chi tiết
NT
19 tháng 8 2021 lúc 13:21

a: Ta có: \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)

b: Ta có: \(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}\)

\(=\sqrt{2}\)

c: \(\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)=5-4=1\)

Bình luận (0)
3P
Xem chi tiết
NT
21 tháng 12 2023 lúc 17:51

Bài 1:

a: \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)

\(=5\cdot2\sqrt{2}-4\cdot3\sqrt{3}-2\cdot5\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-16\sqrt{3}\)

b: \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|1-\sqrt{6}\right|\)

\(=3-\sqrt{6}+\sqrt{6}-1\)

=3-1=2

c: \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\dfrac{1\left(4-\sqrt{15}\right)}{16-15}\)

\(=\sqrt{15}+4-\sqrt{15}=4\)

d: \(\dfrac{2\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)

\(=\dfrac{\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\dfrac{\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=3+\sqrt{5}-\dfrac{\sqrt{5}}{2}=3+\dfrac{\sqrt{5}}{2}\)

Bài 2:

Vẽ đồ thị:

loading...

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x-4=-3x+3\)

=>\(\dfrac{1}{2}x+3x=3+4\)

=>\(\dfrac{7}{2}x=7\)

=>x=2

Thay x=2 vào y=-3x+3, ta được:

\(y=-3\cdot2+3=-3\)

Vậy: (d1) cắt (d2) tại A(2;-3)

Bình luận (0)
H24
Xem chi tiết
H24
8 tháng 7 2023 lúc 19:18

\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)

\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)

\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)

Bình luận (0)
TC
Xem chi tiết
NT
20 tháng 8 2021 lúc 21:07

a: Ta có: \(\sqrt{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)

b: Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{2}}\)

\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)

=9-2

=7

c: Ta có: \(\left(\sqrt{7}+\sqrt{5}\right)\cdot\sqrt{12-2\sqrt{35}}\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=2

Bình luận (0)
TN
Xem chi tiết
KF
Xem chi tiết
H24
27 tháng 9 2023 lúc 20:59

`a)\root[3]{135}/\root[3]{5}-\root[3]{54}.\root[3]{4}`

`=\root[3]{135/5}-\root[3]{54.4}`

`=\root[3]{27}-\root[3]{216}`

`=3-6=-3`

`b)(\root[3]{25}-\root[3]{10}+\root[3]{4})(\root[3]{5}+\root[3]{2})`

`=5+\root[3]{50}-\root[3]{50}-\root[3]{20}+\root[3]{20}+2`

`=7`.

Bình luận (0)
LL
Xem chi tiết
PC
12 tháng 7 2021 lúc 7:57

a, \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(2\left(-5\right)\right)^2}\)

\(=\left|3-\sqrt{2}\right|+\sqrt{\left(-10\right)^2}\)

\(=3-\sqrt{2}+\left|-10\right|\)

\(=3-\sqrt{2}+10\)

\(=13-\sqrt{2}\)

b, \(\dfrac{\sqrt{270}}{\sqrt{30}}-\sqrt{1,8}.\sqrt{20}\)

\(=\sqrt{9}-\sqrt{1,8.20}\)

\(=3-\sqrt{36}\)

\(=3-6\)

\(=-3\)

 

Bình luận (0)