3P

Bài 1: Tính

a) \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\) 

b) \(1\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\) 

c) \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\) 

d) \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\) 

Bài 2: Cho (d₁): y = \(\dfrac{1}{2}x-4\) và (d₂): y = \(-3x+3\) . Vẽ (d₁) và (d₂) trên cùng một hệ trục tọa độ. Tìm tọa độ giao điểm A của 2 đường thẳng trên. 

Helpp!!

NT
21 tháng 12 2023 lúc 17:51

Bài 1:

a: \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)

\(=5\cdot2\sqrt{2}-4\cdot3\sqrt{3}-2\cdot5\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-16\sqrt{3}\)

b: \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|1-\sqrt{6}\right|\)

\(=3-\sqrt{6}+\sqrt{6}-1\)

=3-1=2

c: \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\dfrac{1\left(4-\sqrt{15}\right)}{16-15}\)

\(=\sqrt{15}+4-\sqrt{15}=4\)

d: \(\dfrac{2\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)

\(=\dfrac{\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\dfrac{\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=3+\sqrt{5}-\dfrac{\sqrt{5}}{2}=3+\dfrac{\sqrt{5}}{2}\)

Bài 2:

Vẽ đồ thị:

loading...

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x-4=-3x+3\)

=>\(\dfrac{1}{2}x+3x=3+4\)

=>\(\dfrac{7}{2}x=7\)

=>x=2

Thay x=2 vào y=-3x+3, ta được:

\(y=-3\cdot2+3=-3\)

Vậy: (d1) cắt (d2) tại A(2;-3)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
3P
Xem chi tiết
H24
Xem chi tiết
3P
Xem chi tiết
TN
Xem chi tiết
DM
Xem chi tiết
AK
Xem chi tiết
3P
Xem chi tiết
NK
Xem chi tiết