Những câu hỏi liên quan
PB
Xem chi tiết
CT
19 tháng 4 2018 lúc 10:55

Bình luận (0)
DA
Xem chi tiết
SL
2 tháng 12 2019 lúc 12:48

Có P = x2 + 5y2 + 4xy + 6x + 16y + 32

         = [(x2 + 4xy + 4y2) + 6x + 12y + 9] + (y2 + 4y + 22) + 19

         = [(x + 2y)2 + 2(x + 2y).3 + 32 ] + (y + 2)2 + 19

         = (x + 2y + 3)2 + (y + 2)2 + 19

Thấy (x + 2y + 3)2 ≥ 0 với mọi x; y

         (y + 2)2 ≥ 0 với mọi y

=> (x + 2y + 3)2 + (y + 2)2 ≥ 0 với mọi x; y

=> (x + 2y + 3)2 + (y + 2)2 + 19 ≥ 19 với mọi x; y

=> P ≥ 19 với mọi x; y

Dấu "=" xảy ra khi x + 2y + 3 = 0 và y + 2 = 0

Bn tự giải tiếp nha, mk ko biết có nhầm chỗ nào ko nhưng cách lm như vậy đó

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NT
18 tháng 7 2021 lúc 15:43

undefinedundefined

Bình luận (1)
NT
18 tháng 7 2021 lúc 23:20

Bài 6:

a) Ta có: \(A=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(B=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi x=-4

c) Ta có: \(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Bình luận (0)
NT
18 tháng 7 2021 lúc 23:21

Bài 7:

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

Bình luận (0)
LN
Xem chi tiết
CD
11 tháng 1 2021 lúc 22:54

Bình luận (0)
H24
Xem chi tiết
H9
4 tháng 8 2023 lúc 6:30

a) \(M=x^2-3x+10\)

\(M=x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{31}{4}\)

\(M=\left(x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}\right)+\dfrac{31}{4}\)

\(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\)

Mà: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) nên: \(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Dấu "=" xảy ra 

\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}=\dfrac{31}{4}\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy: \(M_{min}=\dfrac{31}{4}\) với \(x=\dfrac{3}{2}\)

b) \(N=2x^2+5y^2+4xy+8x-4y-100\)

\(N=x^2+x^2+4y^2+y^2+4xy+8x-4y-120+16+4\)

\(N=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

Mà:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) nên \(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge120\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2y=0\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy: \(N_{min}=120\) khi \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Bình luận (1)
GH
4 tháng 8 2023 lúc 6:16

a

\(M=x^2-3x+10=x^2-2.\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{31}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Min M \(=\dfrac{31}{4}\) khi và chỉ khi \(x=\dfrac{3}{2}\)

Bình luận (0)
GH
4 tháng 8 2023 lúc 6:20

b

\(N=2x^2+5y^2+4xy+8x-4y-100\\ =x^2+8x+16+y^2-4y+4+x^2+4xy+4y^2-120\\ =\left(x+4\right)^2+\left(y-2\right)^2+\left(x+2y\right)^2-120\ge-120\)

Min N \(=-120\) khi và chỉ khi \(x=-4\) và \(y=2\)

Bình luận (0)
HH
Xem chi tiết
NM
22 tháng 12 2021 lúc 22:22

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

Bình luận (0)
LL
22 tháng 12 2021 lúc 22:23

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Bình luận (0)
Xem chi tiết
NT
22 tháng 7 2021 lúc 14:38

A = x^2 + 5y^2 + 4xy - 2y - 3 

= x^2 + 4xy + 4y^2 + y^2 - 2y + 1 - 4

= ( x + 2y )^2 + ( y - 1 )^2 - 4 >= -4 

Dấu ''='' xảy ra khi y = 1 ; x = -2 

Vậy GTNN A là -4 khi x = -2 ; y = 1

Bình luận (3)
NT
22 tháng 7 2021 lúc 22:22

Ta có: \(A=x^2+5y^2+4xy-2y-3\)

\(=\left(x^2+4xy+4y^2\right)+\left(y^2-2y+1\right)-4\)

\(=\left(x+2y\right)^2+\left(y-1\right)^2-4\ge-4\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

Bình luận (0)
MN
Xem chi tiết
H24
7 tháng 11 2021 lúc 15:28

mik tưởng 2x2 chứ

Bình luận (1)
NM
7 tháng 11 2021 lúc 15:30

\(A=\left[\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1\right]+\left(y^2+2y+1\right)+2008\\ A=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\\ A_{min}=2008\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

Bình luận (2)
MC
Xem chi tiết
KY
20 tháng 12 2020 lúc 13:10
Bạn chơi ff ko 😀😀😀
Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 12 2020 lúc 16:24

A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)

  = (x+2y+3/2)2 + (y+5/2)2 + 15

=> A min = 15

Dấu "=" xảy ra khi y=-5/2 ; x=7/2

Bình luận (0)
 Khách vãng lai đã xóa
NL
20 tháng 12 2020 lúc 17:47

\(A=x^2+5y^2+4xy+3x+8y+26\)

\(=\left(x^2+4xy+4y^2\right)+\left(3x+6y\right)+\frac{9}{4}+\left(y^2+2y+1\right)+\frac{91}{4}\)

\(=\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)

\(=\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\forall x,y\)

Dấu"="xảy ra khi \(\orbr{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)

Vậy .....

Bình luận (0)
 Khách vãng lai đã xóa