Cho pt`x^2+(m+2)x-m-4=0`
Tìm m để pt 2 nghiệm pb `x_1<0<=x_2`
Làm cách gì ngắn thui :v
Cho: \(x^2-\left(m-3\right)x+2m-11=0\)
a)Cm: pt luôn có 2 nghiệm pb với mọi m
b)Tìm m để pt luôn có 2 nghiệm pb \(x_1:x_2\) là độ dài 2 cạnh của một tam giác vuông cạnh huyền =4
a) \(\Delta\)=(m-3)2-4.1.(2m-11)=m2-14m+53=(m-7)2+4\(\ge\)4.
\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.
b) Từ ycđb, ta có: x12+x22=42 \(\Leftrightarrow\) (x1+x2)2-2x1x2=16 \(\Leftrightarrow\) (m-3)2-2(2m-11)=16 \(\Leftrightarrow\) m2-10m+15=0 \(\Leftrightarrow\) \(m=5\pm\sqrt{10}\).
pt x^2-(2m+1)x+2m=0
tìm m dương để pt có hai nghiệm pb |x_1^2-x_2^2|=35
\(a+b+c=1-\left(2m+1\right)+2m=0\)
\(\Rightarrow\) Phương trình có 2 nghiệm \(x=1\) ; \(x=2m\)
Để pt có 2 nghiệm pb \(\Rightarrow2m\ne1\Rightarrow m\ne\dfrac{1}{2}\)
\(\left|x_1^2-x_2^2\right|=35\)
\(\Leftrightarrow\left|4m^2-1\right|=35\)
\(\Leftrightarrow\left[{}\begin{matrix}4m^2-1=35\\4m^2-1=-35\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2=9\\m^2=-\dfrac{17}{2}\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=3\\m=-3< 0\left(loại\right)\end{matrix}\right.\)
Cho pt x^2-(m+2)x+m+8=0
Tìm m để pt có 2 nghiệm pb \(x_1^3=x_2\)
Ta có \(\Delta=\left(m+2\right)^2-4\left(m+8\right)>0\)
<=> \(m^2-28>0\)
<=> \(\orbr{\begin{cases}m>\sqrt{28}\\m< -\sqrt{28}\end{cases}}\)
Áp dụng hệ thức vi-et ta có
\(\hept{\begin{cases}x_1+x_2=m+2\\x_1x_2=m+8\end{cases}}\)
=> \(x_1+x_2-x_1x_2+6=0\)
Mà \(x_1^3=x_2\)
=> \(x_1^3+x_1-x_1^4+6=0\)
<=> \(\)\(x_1=2\)
=> m=8(thỏa mãn ĐK)
Vậy m=8
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)
cho pt \(\left(m-4\right)x^2-2mx+m-2=0\)
a,tìm m để pt có nghiệm \(x=\sqrt{2}\) . Tìm nghiệm còn lại
b, tìm m để pt có 2 nghiệm phân biệt
c, tính \(x_1^2+x_2^2\) theo m
a thay vào mà tính, dễ rồi nên mình ko làm nữa nhé
b, Để phương trình có 2 nghiệm phân biệt thì delta > 0
hay \(4m^2-4\left(m-2\right)\left(m-4\right)=4m^2-4\left(m^2-6m+8\right)=6m-8>0\)
\(\Leftrightarrow-8>-6m\Leftrightarrow m>\dfrac{4}{3}\)
c, Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-4}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-2}{m-4}\end{matrix}\right.\)
Lại có: \(\left(x_1+x_2\right)^2=\dfrac{4m^2}{\left(m-4\right)^2}\Rightarrow x_1^2+x_2^2=\dfrac{4m^2}{\left(m-4\right)^2}-2x_1x_2\)
\(=\dfrac{4m^2}{\left(m-4\right)^2}-\dfrac{2m-4}{m-4}=\dfrac{4m^2-\left(2m-4\right)\left(m-4\right)}{\left(m-4\right)^2}\)
\(=\dfrac{4m^2-2m^2+12m-16}{\left(m-4\right)^2}=\dfrac{2m^2+12m-16}{\left(m-4\right)^2}\)
3. cho `x^2 -5x+m+2=0`
Gọi `x_1 ;x_2` là 2 nghiệm pb của pt. tìm max \(P=x_1^2x_2+x_1x_2^2-x_1^2x_2^2-4\)
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(m+2\right)\)
\(=25-4m-8=-4m+17\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+17>0
=>-4m>-17
=>\(m< \dfrac{17}{4}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-5\right)}{1}=5\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m+2}{1}=m+2\end{matrix}\right.\)
\(P=x_1^2\cdot x_2+x_1\cdot x_2^2-x_1^2\cdot x_2^2-4\)
\(=x_1x_2\left(x_1+x_2\right)-\left(x_1x_2\right)^2-4\)
\(=5\left(m+2\right)-\left(m+2\right)^2-4\)
\(=5m+10-m^2-4m-4-4\)
\(=-m^2+m+2\)
\(=-\left(m^2-m-2\right)\)
\(=-\left(m^2-m+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(m-\dfrac{1}{2}\right)^2+\dfrac{9}{4}< =\dfrac{9}{4}\forall m\)
Dấu '=' xảy ra khi \(m=\dfrac{1}{2}\)
\(\Delta=25-4\left(m+2\right)=17-4m>0\Rightarrow m< \dfrac{17}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+2\end{matrix}\right.\)
\(P=x_1x_2\left(x_1+x_2\right)-\left(x_1x_2\right)^2-4\)
\(=5\left(m+2\right)-\left(m+2\right)^2-4\)
\(=-\left[\left(m+2\right)-\dfrac{5}{2}\right]^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
\(P_{max}=\dfrac{9}{4}\) khi \(m+2=\dfrac{5}{2}\Rightarrow m=\dfrac{1}{2}\)
1) Cho pt \(5x^2-7x+1=0\)
a) C minh pt có 2 nghiệm phân biệt \(x_1,x_2\)
b) Tính giá trị biểu thức \(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x^2_2}+x^2_2\)
2) Cho pt \(x^2-4+1-2m=0\) (x là ẩn số)
a) tìm m để pt có nghiệm
b) tìm m để 2 nghiệm \(x_1,x_2\) của pt thỏa \(x^2_1+x^2_2=6\)
`1)`
$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb
$b\big)$
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)
\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)
\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). Pt này luôn có 2 nghiệm phân biệt \(x_1;x_2\) \(\forall m\). Tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn:
\(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)
(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))
Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)
\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\)
\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)
Thế vào \(x_1x_2=2m\)
\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)
\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)
\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))
Cho pt\(x^2-2\left(m+2\right)+m^2+m+3=0\)
Tìm m để pt có 2 nghiệm pb x1, x2 thỏa mãn : \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
Lời giải:
Để PT có 2 nghiệm phân biệt $x_1,x_2$ thì:
\(\Delta'=(m+2)^2-(m^2+m+3)>0\)
\(\Leftrightarrow 3m+1>0\Leftrightarrow m> \frac{-1}{3}\)
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m^2+m+3\end{matrix}\right.\)
\(x_1x_2=m^2+m+3=(m+\frac{1}{2})^2+\frac{11}{4}\neq 0, \forall m>\frac{-1}{3}\) nên $x_1,x_2\neq 0$ với mọi \(m> \frac{-1}{3}\).
Khi đó:
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=1\)
\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=4\)
\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)
\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=6\Rightarrow (x_1+x_2)^2=6x_1x_2\)
\(\Leftrightarrow 4(m+2)^2=6(m^2+m+3)\)
\(\Leftrightarrow 2m^2-10m+2=0\)
\(\Leftrightarrow m=\frac{5\pm \sqrt{21}}{2}\) (thỏa mãn)