Tìm x biết (x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0
Bài 1 : tìm x biết
a) ( /x/ - 1/4 ) . ( x2 - 9 ) = 0
b) ( /x/ + 2 ) . ( /x/ - 4 ) = 0
c) ( x2 - 1/4 ) . ( x2 - 1/10 ) = 0
d) ( x + 2 ) . ( x - 3 ) < 0
e) ( x - 1/4 ) . ( x + 1/2 ) > 0
/ x / là giá trị tuyệt đối ak bạn
d) (x + 2)(x - 3) < 0
Ta có bảng :
x -2 3 |
x + 2 - 0 + + |
x - 3 - - 0 + |
(x + 2)(x - 3) + - + |
Vậy (x + 2)(x - 3) < 0
Khi : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Leftrightarrow}-2< x< 3}\)
Bài 1 : Tìm x biết
a) ( /x/ - 1/4 ) . ( x2 - 9 ) = 0
b) ( /x/ + 2 ) . ( /x/ - 4 ) = 0
c) ( x2 - 1/4 ) . ( x2 - 1/16 ) = 0
d) ( x + 2 ) . ( x - 3 ) < 0
e) ( x - 1/4 ) . ( x + 1/2 ) > 0
Tìm x biết a) x(x-25)=0 b)2x(x-4)-x(2x-1)=-28 c)x^2 -5x=0 d)(x-2)^2-(x+1)(x+3)=-7 e)(3x+5).(4-3x)=0 f)x^2-1/4=0
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
Tìm x biết
a) x(x-5)(x+5)-(x-2)(x^2+2x+4)=3
b) 25x^2-2=0
c) (x+2)^2=(2x-1)^2
d) (x+2)^2-x^2+4=0
e) (x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0
\(x\left(x-5\right)\left(x+5\right)-\left(x-2\right)\left(x^2+2x+4\right)=3\)
<=> \(x\left(x^2-25\right)-\left(x^3+2x^2+4x-2x^2-4x-8\right)=3\)
<=> \(x^3-25x-x^3-2x^2-4x+2x^2+4x+8=3\)
<=> \(-25x+8=3\)
<=> \(-25x=-5\)
<=> \(x=\frac{1}{5}\)
\(25x^2-2=0\)
<=> \(\left(5x\right)^2=2\)
<=> \(\hept{\begin{cases}5x=\sqrt{2}\\5x=-\sqrt{2}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)
\(\left(x+2\right)^2=\left(2x-1\right)^2\)
<=> \(\hept{\begin{cases}x+2=2x-1\\x+2=-2x+1\end{cases}}\)
<=> \(\hept{\begin{cases}-x=-3\\3x=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}\)
\(\left(x+2\right)^2-x^2+4=0\)
<=> \(\left(x+2\right)^2-\left(x^2-4\right)=0\)
<=> \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
<=> \(\left(x+2\right)\left(x+2-x+2\right)=0\)
<=> \(\left(x+2\right).4=0\)
<=> \(x+2=0\)
<=> \(x=-2\)
câu còn lại tương tự nha
Tìm x ϵ z biết
1, 0<x<3
2,0<x≤3
3, -1<x≤4
4, -2≤x≤2
5, -5<x≤0
6, -3<x≤0
7, 0<x-1≤1
8, -1≤x-1<0
9,1≤x-1≤2
10, 1≤x-1<2
11, -3<x<3
12, -3≤x≤3
13, -3<x-1<3
14, -3≤x-1≤3
15, -2<x+1<2
16, -4<x+3<4
17, 0≤x-5≤2
18, x là số không âm và nhỏ hơn 5
19,(x-3) là số không âm và nhỏ hơn 4
20, (x+2) là số dương và không lớn hơn 5
cÁC BẠN ƠI GIÚP MÌNH VS Ạ,MÌNH ĐANG CẦN GẤP!!!!!!
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
Tìm x, biết:
a) x(x-2)+x-2=0
b) 2/3x( x^2-4) =0
g)(x+2)^2 -x+4=0
h)(x+2)^2= (2x-1)^2
a) x(x - 2) + (x - 2) = 0
=> (x + 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy \(x\in\left\{-1;2\right\}\)
b) \(\frac{2}{3}x\left(x^2-4\right)=0\)
=> x(x2 - 4) = 0
=> \(\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=2^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) (x + 2)2 - x + 4 = 0
=> x2 + 4x + 4 - x + 4 = 0
=> x2 + 3x + 8 = 0
=> (x2 + 3x + 9/4) + 23/4 = 0
=> (x + 3/2)2 + 23/4 \(\ge\frac{23}{4}>0\)
=> Phương trình vô nghiệm
h) (x + 2)2 = (2x - 1)2
=> (x + 2)2 - (2x - 1)2 = 0
=> (x + 2 - 2x + 1)(x + 2 + 2x - 1) = 0
=> (-x + 3)(3x + 1) = 0
=> \(\orbr{\begin{cases}-x+3=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
=> \(x\in\left\{3;-\frac{1}{3}\right\}\)
a) x( x - 2 ) + x - 2 = 0
⇔ x( x - 2 ) + 1( x - 2 ) = 0
⇔ ( x - 2 )( x + 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) 2/3x( x2 - 4 ) = 0
⇔ \(\orbr{\begin{cases}\frac{2}{3}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) ( x + 2 )2 - x + 4 = 0
⇔ x2 + 4x + 4 - x + 4 = 0
⇔ x2 + 3x + 8 = 0 (*)
Ta có : x2 + 3x + 8 = ( x2 + 3x + 9/4 ) + 23/4 = ( x + 3/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x
=> (*) không xảy ra
=> Pt vô nghiệm
h) ( x + 2 )2 = ( 2x - 1 )2
⇔ ( x + 2 )2 - ( 2x - 1 )2 = 0
⇔ [ ( x + 2 ) - ( 2x - 1 ) ][ ( x + 2 ) + ( 2x - 1 ) ] = 0
⇔ ( x + 2 - 2x + 1 )( x + 2 + 2x - 1 ) = 0
⇔ ( 3 - x )( 3x + 1 ) = 0
⇔ \(\orbr{\begin{cases}3-x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
tìm x biết :
4x(x+1) = 8(x+1)
x(2x+1) +\(\dfrac{1}{3}-\dfrac{2}{3}x=0\)
x(x-4) +(x-4)2 =0
3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
4x.(x+1)-8(x+1)=0
(4x-8)(x+1)=0
suy ra x=2 hoặc x=-1
1) \(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x^2+4x=8x+8\Leftrightarrow4x^2-4x-8=0\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Tìm x,biết
a) ( x+2)×(x+3)-(x -2)×(x+5)=0
b) (2x+3)×(x-4)+(x-5)×(x-2)=(3x-5)×(x-4)
c) (8-5x)×(x+2)+4(x-2)×(x+1)+2(x-2)×(x+2)=0
d) (8x-3)×(3x+2)-(4x+7)×(x+4)=(2x+1)×(5x-1)-33
tìm x biết (x+2).(x-2)-(x+1)^2=1
b,x^3-8(x-2)(x-4)=0
c,3x(x-1)+1-x=0
a: (x-2)(x+2)-(x+1)2=1
=>\(x^2-4-\left(x^2+2x+1\right)=1\)
=>\(x^2-4-x^2-2x-1=1\)
=>-2x-5=1
=>-2x=6
=>\(x=\dfrac{6}{-2}=-3\)
b: Sửa đề:\(x^3-8-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x^3-8\right)-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4-x+4\right)=0\)
=>\(\left(x-2\right)\left(x^2+x\right)=0\)
=>x(x+1)(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)
c: 3x(x-1)+1-x=0
=>3x(x-1)-(x-1)=0
=>(x-1)(3x-1)=0
=>\(\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)