Giải phương trình sau : x2 + 2y2 + 2xy + 4x + 9y + 3 = 0
1) Tìm nghiệm nguyên của phương trình : x2= 2y2+2013
2) Giải phương trình x3+2x2- 4x +\(\dfrac{8}{3}\)=0
Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).
Vậy pt vô nghiệm nguyên.
2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).
Phương trình nào sau đây là phương trình của đường tròn?
(I) x2+ y2 – 4x +15y -12= 0.
(II) x2+ y2 – 3x +4y +20= 0.
(III) 2x2+ 2y2- 4x + 6y +1= 0 .
A. Chỉ (I).
B. Chỉ (II).
C. Chỉ (III).
D. Chỉ (I) và (III).
Ta xét các phương án:
(I) có:
(II) có:
(III) tương đương : x2+ y2 – 2x - 3y + 0,5= 0.
phương trình này có:
Vậy chỉ (I) và (III) là phương trình đường tròn.
Chọn D.
Giải phương trình nghiệm nguyên:
3x2 + 5xy - 8x -2y2 - 9y - 4 = 0
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t\in\mathbb{N}$)
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng phương trình tích đơn giản rồi. Bạn chỉ cần xét TH. Lưu ý rằng $t+7y+2>0$ và $t-7y-2, t+7y+2$ có cùng tính chẵn lẻ.
Giải phương trình nghiệm nguyên 6x²+2y2-7xy +14x-9y-21=0
Giải phương trình nghiệm nguyên:
\(x^2+2y^2+2xy+4x+9y+3=0\)
x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên).
ta có pt:
(x + u)^2 + u^2 + u = 7
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**)
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4.
*nếu (x + u)^2 = 0
(**) => (u + 1/2)^2 = 7 + 1 / 4
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên
*nếu (x + u)^2 = 4
(**) => (u + 1/2)^2 = 3 + 1 / 4
=> u^2 + u - 3 = 0 không có nghiệm nguyên.
*nếu (x + u)^2 = 1
(**) => (u + 1/2)^2 = 6 + 1 / 4
=> u^2 + u - 6 = 0
=> u = - 3 hoặc u = 2
+ với u = -3 => y = - 3 - 2 = - 5
có: (x - 3)^2 = 1
=> x - 3 = -1 hoặc x - 3 = 1
=> x = 2 hoặc x = 4
+ với u = 2 => y = 0
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1
=> x = - 3 hoặc x = -1
tóm lại pt có các nghiệm nguyên (x, y) là:
(2, - 5), (4, - 5), (- 3, 0), (-1, 0)
Thông cảm nha tại tớ làm chi tiết nên bị dài
x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên).
ta có pt:
(x + u)^2 + u^2 + u = 7
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**)
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4.
*nếu (x + u)^2 = 0
(**) => (u + 1/2)^2 = 7 + 1 / 4
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên
*nếu (x + u)^2 = 4
(**) => (u + 1/2)^2 = 3 + 1 / 4
=> u^2 + u - 3 = 0 không có nghiệm nguyên.
*nếu (x + u)^2 = 1
(**) => (u + 1/2)^2 = 6 + 1 / 4
=> u^2 + u - 6 = 0
=> u = - 3 hoặc u = 2
+ với u = -3 => y = - 3 - 2 = - 5
có: (x - 3)^2 = 1
=> x - 3 = -1 hoặc x - 3 = 1
=> x = 2 hoặc x = 4
+ với u = 2 => y = 0
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1
=> x = - 3 hoặc x = -1
tóm lại pt có các nghiệm nguyên (x, y) là:
(2, - 5), (4, - 5), (- 3, 0), (-1, 0)
\(x^2+2y^2+2xy+4x+9y+3=0\)
\(\Leftrightarrow\left(x+y\right)^2+y^2+4x+9y+3=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+y^2+5y=1\)
\(\Leftrightarrow\left(x+y+2\right)^2+y^2+5y=1\)
\(\Leftrightarrow4\left(x+y+2\right)^2+4y^2+20y=4\)
\(\Leftrightarrow4\left(x+y+2\right)^2+4y^2+20y+25=29\)
\(\Leftrightarrow4\left(x+y+2\right)^2+\left(2y+5\right)^2=29\)
\(\Rightarrow\left(2y+5\right)^2\le29\)
\(\Leftrightarrow-5\le2y+5\le5\)
\(\Rightarrow2y+5\in\left\{-5;-3;-1;1;3;5\right\}\)(Do 2y + 5 lẻ)
Từ đó tìm được y rồi suy ra x
giải hệ phương trình
(1) x2 + 7 = y2 + 4y
(2) x2 + 3xy + 2y2 + x + y = 0
từ phương trình số 2 ta có
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
lần lượt thay vào 1 ta có
\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)
vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)
tìm nghiệm nguyên của phương trình 2xy + 4x + 2y + 1 > 5x2 + 2y2
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)< 3\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2< 3\)
\(\Rightarrow\left(2x-1\right)^2< 3\) (1)
\(\Rightarrow\left(2x-1\right)^2=\left\{0;1\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\2x-1=1\\2x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- Với \(x=0\Rightarrow2y^2-2y< 1\Rightarrow\left(2y-1\right)^2< 3\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\) (giải như (1))
- Với \(x=1\Rightarrow2y^2+5< 4y+5\Rightarrow y^2-2y< 0\)
\(\Rightarrow y\left(y-2\right)< 0\Rightarrow0< y< 2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(1;1\right)\)
giải hệ phương trình sau \(\hept{\begin{cases}4x+3y=11\\4x^2+9y^2-12xy+9y-10=0\end{cases}}\)
giải hệ phương trình: \(\hept{\begin{cases}16x^3y^3-9y^3=\left(2xy-y\right)\left(4xy^2+3\right)\\4x^2y^2-2xy^2+y^2=3\end{cases}}\)