Giải phương trình nghiệm nguyên 6x²+2y2-7xy +14x-9y-21=0
giải hệ phương trình
(1) x2 + 7 = y2 + 4y
(2) x2 + 3xy + 2y2 + x + y = 0
giải hệ phương trình sau \(\hept{\begin{cases}4x+3y=11\\4x^2+9y^2-12xy+9y-10=0\end{cases}}\)
giải hệ phương trình: \(\hept{\begin{cases}16x^3y^3-9y^3=\left(2xy-y\right)\left(4xy^2+3\right)\\4x^2y^2-2xy^2+y^2=3\end{cases}}\)
Giải các phương trình sau bằng phương pháp đặt ẩn phụ: x 2 - 2 x 2 – 2 x 2 + 4x – 3 = 0
Giải các phương trình sau bằng cách đưa về phương trình tích 3 x 3 +6 x 2 -4x =0
Giải hệ phương trình 1 x − x y = x 2 + x y − 2 y 2 ( 1 ) x + 3 − y 1 + x 2 + 3 x = 3 ( 2 )
giải hệ pt: \(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\\2x^2+xy+4y^2=5\end{matrix}\right.\)
tìm m để phương trình sau có 3 nghiệm phân biệt
\(x^4-4x^3+x^2+6x+m+2=0\) có 3 nghiệm phân biệt x1,x2,x3
Bài 1 : tìm x ; y nguyên dương
2xy + x + y = 83
Bài 2 tìm nghiệm nguyên của phương trình :
a ) x2 + 2y2 + 3xy - x - y + 3 = 0
b ) 6x2y3 + 3x2 - 10y3 = -2