Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HH
Xem chi tiết
NS
7 tháng 9 2017 lúc 20:31

v~ đề khó hiểu vậy sao làm

Bình luận (0)
DA
Xem chi tiết
KL
22 tháng 10 2023 lúc 12:13

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

Bình luận (0)
TD
Xem chi tiết
NC
5 tháng 7 2019 lúc 10:50

Với mọi số tự nhiên a> 1 ta có:

 \(\frac{1}{\sqrt{a}}=\frac{2}{2\sqrt{a}}>\frac{2}{\sqrt{a}+\sqrt{a+1}}=2\left(\sqrt{a+1}-\sqrt{a}\right)=2\sqrt{a+1}-2\sqrt{a}\)

\(\frac{1}{\sqrt{a}}=\frac{2}{2\sqrt{a}}< \frac{2}{\sqrt{a}+\sqrt{a-1}}=2\left(\sqrt{a}-\sqrt{a-1}\right)=2\sqrt{a}-2\sqrt{a-1}\)

Áp dụng vào bài tập trên ta có:

\(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{144}}\)

\(>2\sqrt{2}-2\sqrt{1}+2\sqrt{3}-2\sqrt{2}+2\sqrt{4}-2\sqrt{3}+...+2\sqrt{145}-2\sqrt{144}\)

\(=-2\sqrt{1}+2\sqrt{145}>2\left(\sqrt{145}-1\right)>2\left(\sqrt{144}-1\right)=22\)

=> S>22

\(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{144}}\)

\(< 1+2\sqrt{2}-2\sqrt{1}+2\sqrt{3}-2\sqrt{2}+...+2\sqrt{144}-2\sqrt{143}\)

\(=1-2\sqrt{1}+2\sqrt{144}=23\)

=> S<23

Vậy 22<S<23

Bình luận (0)
DT
Xem chi tiết
NH
Xem chi tiết
H9
22 tháng 6 2023 lúc 10:13

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

Bình luận (0)
MS
Xem chi tiết
LR
24 tháng 7 2016 lúc 20:14

\(2^{2n}\left(2^{2n+3}-1\right)-1\\ =4n\left(4n+2^3-1\right)-1\\ =\left(4n.4n+4n.2^3+4n-1\right)-1\\ =\left(16.2n+32n+3nn-1n\right)-1n\\ =65nchiah\text{ết}cho5\)

Bình luận (0)
NT
Xem chi tiết
DH
Xem chi tiết
TV
Xem chi tiết
PH
Xem chi tiết