cho a/b=c/d.CMR
(a+b/c+d)^2=a^2+b^2/c^2+d^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a/b=c/d.CMR: ab/cd=a^2=b^2/c^2-d^2 và (a+b/c+d)^2=a^2+b^2/c^2+d^2
bạn xem cái m đầu tiên đi nhé, mình thấy nó sao sao ấy, mình sẽ làm kia cho bạn
đặt
\(\dfrac{a}{b}=\dfrac{c}{d}=n\\ < =>\left\{{}\begin{matrix}a=bn\\c=dn\end{matrix}\right.\)
có
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\\ =\left(\dfrac{bn+b}{dn+d}\right)^2\\ =\left[\dfrac{b\left(n+1\right)}{d\left(n+1\right)}\right]^2\\ =\left(\dfrac{b}{d}\right)^2\left(1\right)\)
và
\(\dfrac{a^2+b^2}{c^2+d^2}\\ =\dfrac{\left(bn\right)^2+b^2}{\left(dn\right)^2+d^2}\\ =\dfrac{b^2n^2+b^2}{d^2n^2+d^2}\\ =\dfrac{b^2\left(n^2+1\right)}{d^2\left(n^2+1\right)}\\ =\dfrac{b^2}{d^2}\\ =\left(\dfrac{b}{d}\right)^2\left(2\right)\)
từ 1 và 2
=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
ko hiểu chỗ nào thì hỏi mình nhé, mình nói cho :)
chúc may mắn
bài 1: Cho a/b=c/d.CMR ac/bd=a2+c2/b2+d2
bài 2: Cho a/b=c/d.CMR a/a-b=c/c-d
bài 3: Cho a/b=b/c=c/a.CMR a=b=c
Giúp mik với.Cần lắm ai giúp đỡ với T_T
ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddđ
qqqqqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
xxxxxxx
cho a/b=c/d.CMR : ab/cd=a^2-b^2/c^2-d^2 và (a+b/c+d)^2=a^2+b^2/c^2+d^2
ta có \(\frac{a}{b}=\frac{c}{d}\)nên \(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)\(=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)
mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(tính chất dãy tỉ số bằng nhau)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)(tính chất dãy tỉ số bằng nhau)(đpcm)
cho a,b,c,d thuộc z tìm a+b=c+d.cmr a^2+b^2+c^2+d^2 là số chính phương
cho tỉ lệ thức a/b=c/d.cmr ta có tỉ lệ thức sau: (a+c/c+d)^2=a^2+b^2/c^2+d^2
Cho 4 so duong a,b,c,d.CMR: a/b+c + b/c+d + c/a+d + d/a+b >=2
cái này dài lắm lúc khác rảnh tui làm cho
k cần bạn lm nữa Quận Hoàng Đăng ak. thầy chữa bt r`
B1. Cho a/c=c/b.
b, b^2 - a^2/ a^2 +c^2 = b-a/a
B2. cho a/b=c/d.
CMR: a, 4a-3b/a=4c-3d/c
b,(a-b)^2/(c-d)^2=3a^2+2b^2/3c^2+2d^2
Bài 2:
a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{4a-3b}{a}=\dfrac{4\cdot bk-3b}{bk}=\dfrac{b\left(4k-3\right)}{bk}=\dfrac{4k-3}{k}\)
\(\dfrac{4c-3d}{c}=\dfrac{4\cdot dk-3d}{dk}=\dfrac{d\left(4k-3\right)}{dk}=\dfrac{4k-3}{k}\)
Do đó: \(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
b: \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{3a^2+2b^2}{3c^2+2d^2}=\dfrac{3\cdot\left(bk\right)^2+2b^2}{3\cdot\left(dk\right)^2+2d^2}\)
\(=\dfrac{b^2\left(3k^2+2\right)}{d^2\left(3k^2+2\right)}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{3a^2+2b^2}{3c^2+2d^2}\)
cho tỉ lệ thức a/b=c/d.cmr ta có tỉ lệ thức sau: (a+c/c+d)^2=a^2+b^2/c^2+d^2
Ai giúp mình vs.mình đang cần gấp
Cho a/b = c/d.CMR \(\dfrac{a}{d}\) = \(\dfrac{a^2+b^2}{b^2+d^2}\)