Những câu hỏi liên quan
TM
Xem chi tiết
HH
4 tháng 8 2017 lúc 8:25

Bt=4/2ab+3/(a^2+b^2)=1/2ab+3(1/2ab+1/a^2+b^2)

>=1/2ab+3.4/(a+b)^2(BĐT Cauchuy-Swartch)

>=2/4ab+12/(a+b)^2>=2(a+b)^2+12/(a+b)^2=14/(a+b)^2=1

Dấu= xảy ra khi a=b=1/2

Bình luận (0)
HH
17 tháng 10 2017 lúc 18:29

ab là 1/2

Bình luận (0)
LV
15 tháng 5 2018 lúc 12:29

a/b là 1/2

Bình luận (0)
DT
Xem chi tiết
BB
Xem chi tiết
NT
24 tháng 5 2022 lúc 14:09

\(ab+bc+ac=3\)

Ta có:

\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\) ( đúng với mọi \(ab\ge1\))

Giả sử:\(ab\ge1\)

\(\Rightarrow\dfrac{2}{ab+1}+\dfrac{1}{c^2+1}\ge\dfrac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)

Giả sử: \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\)(đúng)

\(\Leftrightarrow2\left(2c^2+ab+3\right)\ge3\left(ab+1\right)\left(c^2+1\right)\)

\(\Leftrightarrow4c^2+2ab+6\ge3\left(abc^2+ab+c^2+1\right)\)

\(\Leftrightarrow4c^2+2ab+6\ge3abc^2+3ab+3c^2+3\)

\(\Leftrightarrow c^2-ab-3abc^2+3\ge0\)

\(\Leftrightarrow c^2-ab-3abc^2+ab+ac+bc\ge0\)   ( vì \(ab+ac+bc=3\) )

\(\Leftrightarrow c^2+ac+bc-3abc^2\ge0\)

\(\Leftrightarrow c+a+b-3abc\ge0\)

\(\Leftrightarrow c+a+b\ge3abc\)

Ta có:

\(3\left(c+a+b\right)=\left(ab+ac+bc\right)\left(c+a+b\right)\) ( vì \(ab+ac+bc=3\) )

Áp dụng BĐT AM-GM, ta có:

\(\left(ab+ac+bc\right)\left(c+a+b\right)\ge9abc\)

\(\Rightarrow a+b+c\ge3abc\)

\(\Rightarrow\) \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\) ( luôn đúng )

\(\Rightarrow\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\) ( đfcm )

Dấu "=" xảy ra khi \(a=b=c=1\)

 

 

Bình luận (0)
HD
24 tháng 5 2022 lúc 14:03

Hình như sai đề rồi bạn ạ, dấu ≥ phải là ≤

Bình luận (1)
NA
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
H24
16 tháng 11 2021 lúc 10:15

Tham khảo: https://lazi.vn/edu/exercise/cho-a-b-c-la-cac-so-duong-thoa-man-a2-2b2-3c2-chung-minh-1-a-2-b-3-c

Bình luận (0)
VN
Xem chi tiết
NL
21 tháng 8 2021 lúc 16:00

\(VT=3\left(\dfrac{1}{4ab}+\dfrac{1}{a^2+4b^2}\right)+\dfrac{1}{2.a.2b}\ge\dfrac{12}{a^2+4ab+4b^2}+\dfrac{2}{\left(a+2b\right)^2}=14\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)

Bình luận (2)
H24
Xem chi tiết
LD
Xem chi tiết
AH
13 tháng 4 2021 lúc 14:27

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)