tìm x
1 phần 1.2 + 1 phần 2.3 +..........+ 1 phần x. (x+1) = 432 phần 15
giupf mình với
so sánh
M= 1 phần 1.2 + 1 phần 2.3 + ...+ 1 phần 49 phần 50 với 1
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{49}-\frac{1}{49}\right)-\frac{1}{50}\)
\(M=\frac{1}{1}-\frac{1}{50}\)
\(M=\frac{49}{50}\)
Vậy M < 1
a) Chứng tỏ rằng với n thuộc N, n khác 0 thì:
1 phần n x (n+1) = 1 phần n - 1 phần n+1
b) Asp dụng kết quả ở câu a) để tính nhanh:
A= 1 phần 1.2 + 1 phần 2.3 +.....................+ 1 phần 9.10
a: \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
b: \(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{9}{10}\)
C=1 phần 1.2+1 phần 2.3+1 phần 3.4+...+1 phần 99.100
ta có
\(C=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{4.3}+..+\frac{100-99}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{99}{100}\)
\(=\frac{1}{100}\)
1 phần 1.2 + 1 phần 2.3 + 1phần 3.4+ .....+1 phần 99.100
= 1- 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +... + 1/99 - 1/100
= 1 - 99/100
= 1/100.
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{1}-\dfrac{1}{100}=\dfrac{100}{100}-\dfrac{1}{100}\)
=\(\dfrac{99}{100}\)
1 phần 1.2+ 1phần 2.3+1 phần 3.4+1 phần 99.100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=
Tính N : 1 phần 1.2 + 1 phần 2.3 + 1 phần 3.4 + ...+ 1 phần 2005 . 2006
Tính M = 2 phần 1.3 + 2 phần 3.5 + 2 phần 5.7 + 2 phần 7.9 + 2 phần 2015 . 2017
( mình ko viết được số phần mong các bạn thông cảm nhé . CẢM ƠN CÁC BẠN VÌ ĐÃ GIẢI GIÚP MÌNH )
Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)
\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006
= 1/1 - 1/2006
= 2006/2006 - 1/2006
= 2005/2006
1 phần 1.2 cộng 1 phần 2.3 cộng 1 phần 3 .4 cộng K cộng 1 phần 2003.2004
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2003\cdot2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+....\left(\frac{1}{2003}-\frac{1}{2003}\right)-\frac{1}{2004}\)
\(=1-0+0+0+....+0-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2003}{2004}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2003}{2004}\)
TÌM X:
A) [124-(20-4x)]:20=12
B)1 phần 3 :(2x-1)= -4 phần 21
C) (1 phần 2.3 + 1 phần 3.4+...+1 phần 8.9 + 1 phần 9.1).x= 1 phần 5
giúp em với ạ biết đáp án là
A)34
B)-3 phần 8
C) 1 phần 2
cần tìm bước giải
A) [124 - (20 - 4x)] = 12 . 20
[124 - (20 - 4x)] = 240
(20 - 4x) = 240 - 124
(20 - 4x) = 116
4x = 116 + 20
4x = 136
x = 136 : 4
x = 34
B) (2x - 1) = 1/3 : -4/21
2x - 1 = -7/4
2x = -7/4 + 1
2x = -3/4
x = -3/4 : 2
x = -3/8
Tính
+
1+(1+2)+(1+2+3)+...+(1+2+3+...+98) phần 1.2+2.3+3.4+...+98.99
Giúp vỚi mình cần gấp