Những câu hỏi liên quan
H24
Xem chi tiết
NQ
28 tháng 7 2021 lúc 22:42

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)

Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

dấu bằng xảy ra khi x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
H24
29 tháng 7 2021 lúc 11:05

ủa bạn oi nó là \(\sqrt{2}x\)mà có phai\(\sqrt{2x}dau\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
13 tháng 6 2020 lúc 21:27

\(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)

\(\Leftrightarrow8+2\left(xy+yz+zx\right)-4\left(x+y+z\right)-xyz\ge0\)

\(\Leftrightarrow2\left(xy+yz+zx\right)\ge4+xyz\ge4\)

\(\Rightarrow xy+yz+zx\ge2\)

\(\Rightarrow Q=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le9-2.2=5\)

\(Q_{max}=5\) khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và hoán vị

Bình luận (0)
GL
Xem chi tiết
AZ
30 tháng 1 2020 lúc 17:55

Theo đề bài ta có:

\(2\left(y^2+1\right)+6\ge\left(x^4+1\right)+\left(y^4+4\right)+\left(z^4+1\right)\ge2x^2+4y^2+2z^2\)

\(\Rightarrow0< x^2+y^2+z^2\le4\)

Đặt: \(t=x^2+y^2+z^2.Đkxđ:0< t\le4\)

Ta có: \(\sqrt{2}\left(x+y\right)y=\sqrt{2x}y+\sqrt{2z}y\le\frac{2x^2+y^2}{2}+\frac{2z^2+y^2}{2}=x^2+y^2+z^2\)

\(P\le x^2+y^2+z^2+\frac{1}{x^2+y^2+z^2+1}=t+\frac{1}{t+1}=f\left(t\right)\)

Xét hàm: \(f\left(t\right)=t+\frac{1}{t+1}\) liên tục trên \(\left(0;4\right)\) 

\(f'\left(t\right)=1-\frac{1}{\left(t+1\right)^2}>0\forall t\in\left\{0;4\right\}\)nên:

\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left\{0;4\right\}\)

\(\Rightarrow P\le f\left(t\right)\le f\left(4\right)=\frac{21}{5}\forall t\in\left(0;4\right)\)

\(\Rightarrow P_{Min}=\frac{21}{5}\Leftrightarrow\orbr{\begin{cases}x=z=1\\y=\sqrt{2}\end{cases}}\)

Vậy ....................

Bình luận (0)
 Khách vãng lai đã xóa
GL
30 tháng 1 2020 lúc 18:02

ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡

có cách nào không dùng hàm k ???

Bình luận (0)
 Khách vãng lai đã xóa
AZ
30 tháng 1 2020 lúc 18:04

Hmmm h thì mình chưa ra nhưng bạn muốn theo cách gì để mình tìm?

Bình luận (0)
 Khách vãng lai đã xóa
DK
Xem chi tiết
NH
Xem chi tiết

\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)

\(=\sqrt{x^2-2xy+y^2}+\sqrt{y^2-2yz-z^2}+\sqrt{x^2-2xz+z^2}\)

\(=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=x-y+y-z+z-x\)

\(=0\)

Bình luận (0)
DF
Xem chi tiết
AH
4 tháng 1 2021 lúc 19:08

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.

Bình luận (0)
H24
Xem chi tiết
PN
4 tháng 6 2020 lúc 14:42

\(A=x^2+y^2+z^2\le\left(x+y+z\right)^2=9\)

gtln của A = 9

Với  \(x=y=z=1\)

easy không ? =)

Bình luận (0)
 Khách vãng lai đã xóa
PV
8 tháng 6 2020 lúc 21:05

Có 0 <= x,y,z      =>   xyz >= 0                           

Có x,y,z <=2       => (2-x)(2-y)(2-z)>=0        =>  8 - 4(x+y+z) + 2(xy+yz+zx) -xyz >=0

Từ đó => 8 - 4(a+b+c) +2(ab+bc+ca)>=0

=> 8 - 4(a+b+c) + (a+b+c)^2 >= a^2+b^2+c^2

=> 8 -4.3 +3^2 >=A   (vì x+y+z=3)

=> 5>= A

Dấu "=" xảy ra khi x=2,y=1,z=0

Vậy Max A =5 khi x=2,y=1,z=0

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
NP
Xem chi tiết
ND
31 tháng 8 2016 lúc 18:26

10 

có bài tuong tự rồi nhé

Bình luận (0)