a) -13 chia hết cho x + 1
b) x chia hết cho 5 và -10<x<6
tìm x thuộc Z
a/ 3x+2 chia hết cho x-1
b/ 3x+24 chia hết cho x-4
c/x^2+5 chia hết cho x+1
d/ x^2-5x+1 chia hết cho x-5
3+5/x-1
3+36/x-4
x+1+4/x+1
x+1/x-5
a: 3x+2 chia hết cho x-1
=>3x-3+5 chia hết cho x-1
=>5 chia hết cho x-1
=>x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;6;-4}
b: 3x+24 chia hết cho x-4
=>3x-12+36 chia hết cho x-4
=>36 chia hết cho x-4
=>x-4 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36}
=>x thuộc {5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32}
c: x^2+5 chia hết cho x+1
=>x^2-1+6 chia hết cho x+1
=>x+1 thuộc {1;-1;2;-2;3;-3;6;-6}
=>x thuộc {0;-2;1;-3;2;-4;5;-7}
d: x^2-5x+1 chia hết cho x-5
=>1 chia hết cho x-5
=>x-5 thuộc {1;-1}
=>x thuộc {6;4}
Tìm điều kiện của số x thuộc stn để :
a)A=12+14+16+x chia hết cho 2 ;ko chia hết cho 2
b)A=8+12+x chia hết cho 4 và ko chia hết cho 4
c)A=6+12+27+x chia hết cho3 và ko chia hết cho 3
d)A=5+70+x chia hết cho 5;ko chia hết cho 5 ,chia hết cho 10 và ko chia hết cho 10
e)A=10+15+20+x chia hết cho 5 và ko chia hết cho 5
a ) Để A chia hết cho 2 ; x là số chẵn
Để A không chia hết cho 2 ; x là số lẻ
b ) Để A chia hết cho 4 ; x chia hết cho 4
Để A khộng chia hết cho 4 thì ngược lại
c ) Để A không chia hết cho 3 ; x không chia hết cho 3
Để A chia hét cho 3 ; x phải chia hết cho 3
Tìm x biết :
a)(x + 20) chia hết cho 10;(x - 15) chia hết cho 5;(x + 1) chia hết cho 9; x chia hết cho 8 và x < 300
b) 5x = 2x
c)(2x - 1) chia hết cho (x - 3)
d) (x - 2) : (3x - 13)
GIÚP MÌNH NHE
tìm x:
a) 2x + 5 chia hết cho x + 1
b) -x - 5 chia hết cho -x - 1
Lời giải:
Cần bổ sung điều kiện $x$ là số nguyên.
a.
$2x+5\vdots x+1$
$\Rightarrow 2(x+1)+3\vdots x+1$
$\Rightarrow 3\vdots x+1$
$\Rightarrow x+1\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow x\in\left\{0; -2; 2; -4\right\}$
b.
$-x-5\vdots -x-1$
$\Rightarrow (-x-1)-4\vdots -x-1$
$\Rightarrow 4\vdots -x-1$
$\Rightarrow -x-1\in\left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow x\in \left\{0; -2; 1; -3; 3; -5\right\}$
a: =>2x+2+3 chia hêt cho x+1
=>\(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
b: =>x+5 chia hết cho x+1
=>\(x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{0;-2;1;-3;3;-5\right\}\)
đề: tìm x E Z:
a) 23 chia hết cho x +1
b) 17 chia hết cho x-1
c) 5 x +7 chia hết cho x+1
Cho x, y là 2 số nguyên dương mà x^2 + y^2 + 10 chia hết cho xy.
a) C/m x, y là 2 số lẻ và (x,y)=1
b) C/m k=(x^2 + y^2 + 10)/xy chia hết cho 4 và k >=12
a.
Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)
Mà \(\left(x^2+y^2+10\right)⋮xy\) nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)
Ta có \(xy⋮4\)
Do đó \(\left(x^2+y^2+10\right)⋮4\).
Mà \(x^2⋮4,y^2⋮4\) nên \(10⋮4\) (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số lẻ.
Đặt \(d=ƯCLN\left(x,y\right)\)
Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)
Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)
Vậy \(ƯCLN\left(x,y\right)=1\)
b. Theo đề suy ra \(kxy=x^2+y^2+10\)
Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)
Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)
Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)
Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)
Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)
Nên \(\left(x^2+y^2+10\right)⋮3\) \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.
\(\RightarrowƯCLN\left(xy,3\right)=1\), \(x^2\) và \(y^2\) chia cho 3 dư 1.
Do đó \(\left(x^2+y^2+10\right)⋮3\) nên \(kxy⋮3\) mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)
\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)
Mà \(k\in N\)* nên \(k\ge12\)
Tìm x thuộc Z biết :
a, x+3 chia hết cho x-1
b,3x chia hết cho x-1
c,2-x chia hết cho x+1
a, x+3 chia hết cho x-1
Ta có: x+3=(x+1)+2
=> 2 chia hết cho x+1
=>x+1 thuộc Ư(2)= {1, -1, 2, -2}
=> x thuộc {0,-2, 1, -3}
b.
b,3x chia hết cho x-1
c,2-x chia hết cho x+1
Ta có:
\(\dfrac{x+3}{x-1}=\dfrac{x-1+4}{x-1}=1+\dfrac{4}{x-1}\)
Để (x + 3) \(⋮\left(x-1\right)\) thì 4 \(⋮\left(x-1\right)\)
\(\Rightarrow\) x - 1 = 1; x - 1 = -1; x - 1 = 2; x - 1 = -2; x - 1 = 4; x - 1 = -4
*) x - 1 = 1
x = 2
*) x - 1 = -1
x = 0
*) x - 1 = 2
x = 3
*) x - 1 = -2
x = -1
*) x - 1 = 4
x = 5
*) x - 1 = -4
x = -3
Vậy x = 5; x = 3; x = 2; x = 0; x = -1; x = -3
a) Ta có: x + 3 \(⋮\)t x - 1
\(\Rightarrow\) (x - 1) + 4 \(⋮\) x - 1
do x - 1 \(⋮\) x-1
\(\Rightarrow\) 4 \(⋮\) x -1
\(\Rightarrow\) x - 1 \(\in\) Ư(4) = {4;-4;2;-2;1;1}
✳ x - 1 = 4 ✳ x - 1 = -4 ✳ x - 1 = 2
x = 4 + 1 =5 x = -4 + 1 = -3 x = 2 + 1 = 3
✳ x - 1 = -2 ✳ x - 1 = 1 ✳ x - 1 = -1
x = -2 + 1 = 1 x = 1 + 1 = 2 x = -1 + 1 = 0
\(\Rightarrow\) x = {5;-3;3;1;2;0}
a)10chia hết cho x và x <0
b)x chia hết cho 5 và (-10)< x < 6
c)(-9) chia hết cho x và 15 chia hết cho x
d)x chia hết cho (-9) ; x chia hết cho (+12) và 20 < x <50
a. \(\left\{-1;-2;-5;-10\right\}\)
b.\(\left\{-5;0;5\right\}\)
c. UC(-9;15)= \(\left\{-1;-3;1;3\right\}\)
d. BC (-9;12)=\(\left\{0;36;72\right\}\)
Mà 20 <x<50
=> x=36
1tim x
a,x chia hết cho 6 và 10 bé hơn x và bé hơn hoặc bằng 18
b24 chia hết cho x và x>4
cx chia hết cho 10 và 45 chia hết cho x
2 viết dạng tông quat
a,60+xchia hết cho 5
72-xchia hết cho 5
b, chứng minh rằng tổng 3 stn liên tiếp là số chia hết cho 3
Bài 1
a) x ⋮ 6 ⇒ x ∈ B(6) = {0; 6; 12; 18; 24; ...}
Mà 10 < x < 18 nên x = 12
b) 24 ⋮ x ⇒ x ∈ Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Mà x > 4
⇒ x ∈ {6; 8; 12; 24}
c) x ⋮ 10 ⇒ x ∈ B(10) = {0; 10; 20; 30; 40;...} (1)
Lại có 45 ⋮ x ⇒ x ∈ Ư(45) = {1; 3; 5; 9; 15; 45} (2)
Từ (1) và (2) ⇒ không tìm được x thỏa mãn đề bài
Bài 2
a) *) (60 + x) ⋮ 5
Mà 60 ⋮ 5
⇒ x ⋮ 5
⇒ x = 5k (k )
*) (72 - x) ⋮ 5
72 chia 5 dư 2
⇒ x chia 5 dư 3
⇒ x = 5k + 3 (k ∈ ℕ)
b) Gọi a, a + 1, a + 2 là ba số tự nhiên liên tiếp (a ∈ ℕ)
Ta có:
a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) ⋮ 3
Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3