7x2 + (2x2 + 3x5); cần lời giải chi tiết cách trình bài để đc kq của câu này
Câu 1:Thu gọn và tìm bậc của đa thức
A= 2 + 5x2 - 3x3 + 4x2 - 2x - x2 + 6x5
B= 3x5y3 - 4x4y3 + 2x4y3 + 7xy2 - 3x5y3
Câu 2: Thu gọn và sắp xếp theo lũy thừa giảm dần
a) 8x5 - 6x2 + 7x - 3x5 + 2x2 + 15
b) -9 + 5x7 - 6x2 - 11x7 + 7x2 + x5
Câu 1:
A=2+5x²−3x³+4x²−2x−x²+6x5A=2+5x²-3x³+4x²-2x-x²+6x5
A=6x5−3x³+(5x2+4x2−x2)−2x+2A=6x5-3x³+(5x2+4x2-x2)-2x+2
A=6x5−3x3+8x2−2x+2
Bậc của đa thức là bậc 5
...............
B=3x5y3−4x4y3+2x4y3+7xy²−3x5y3
B=(3x5y3−3x5y3)+(−4x4y3+2x4y3)+7xy
B=−2x4y3+7xy2
Bậc của đa thức là bậc 7
................
Câu 2:
a)8x5−6x2+7x−3x5+2x2+
=(8x5−3x5)+(−6x2+2x2)+7x+15
=5x5−4x2+7x+15
..................
b)=-9+5x7-6x2-11x7+7x2+x5
=(5x7-11x7)+x5+(-6x2+7x2)-9
=−6x7+x5+x2−9
Tính nhanh: 3 x 5 + 5 x 3 + 1 x 4 - 7 x 2 + 2 . x 2 x + 3 . x 4 - 7 x 2 + 2 3 x 5 + 5 x 3 + 1
(2x2-7x3-7x2-6x-2) : (2x2+x-1)
aii giúp mình vs ạ :<<
\(Sửa:\left(2x^4-7x^3-7x^2-6x-2\right):\left(2x^2+x-1\right)\\ =\left(2x^4+x^3-x^2-8x^3-4x^2+4x-2x^2-x+1-9x-3\right):\left(2x^2+x-1\right)\\ =\left[x^2\left(2x^2+x-1\right)-4x\left(2x^2+x-1\right)-\left(2x^2+x-1\right)-9x-3\right]:\left(2x^2+x-1\right)\\ =x^2-4x-1\left(\text{dư }-9x-3\right)\)
\(a,2x^2+x=0\)
\(x\left(2x+1\right)=0\)
\(\left[{}\begin{matrix}x=0\\2x=-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)
\(b,-0,4x^2+1,2x=0\)
\(x\left[\left(0,4x\right)-\left(1,2\right)\right]=0\)
\(\left[{}\begin{matrix}x=0\\0,4x-1,2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\0,4x=1,2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=\frac{3}{10}\end{matrix}\right.\)
\(c,7x^2-5x=0\)
\(x\left(7x-5\right)=0\)
\(\left[{}\begin{matrix}x=0\\7x-5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=\frac{5}{7}\end{matrix}\right.\)
\(e,-2x^2-11x=0\)
\(x\left(2x+11\right)=0\)
\(\left[{}\begin{matrix}x=0\\2x+11=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=\frac{11}{2}\end{matrix}\right.\)
Phân tích thành nhân tử rồi thực hiện phép chia
a) ( - 8 x 5 + x 3 - 2 x 2 ) : 2 x 2 ;
b) ( 14 x 6 - 21 x 4 - 35 x 2 ) : ( - 7 x 2 ) .
a) Kết quả - 2 x 4 + 3 x 2 + 5. b) Kết quả - 4 x 3 + 1 2 x − 1.
Giải các pt sau
a) 3x2 + 4x = 0
b) -2x2 - 8 = 0
c) 2x2 -7x2 + 5 = 0
d) x^2 - 8x - 48 = 0
cho mik hỏi rằng là 3x2 + 4x = 0 hay 3x2 + 4x = 0
ông ơi mấy bài này bấm máy tính là ra mà ông
a) \(3x^2+4x=0\Leftrightarrow\left(3x+4\right)x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+4=0\Leftrightarrow x=-\dfrac{4}{3}\end{matrix}\right.\)
➤\(x\in\left\{0;-\dfrac{4}{3}\right\}\)
b) \(-2x^2-8=0\Leftrightarrow-2x^2+\left(-2\right)\cdot4=0\)
\(\Leftrightarrow\left(x^2+4\right)\cdot\left(-2\right)=0\\ \Leftrightarrow x^2+4=0\\\Rightarrow x^2=\varnothing\Leftrightarrow x=\varnothing \)
vì với mọi x, ta luôn đúng với: \(x^2\ge0\Leftrightarrow x^2+4\ge4>0\)
➤\(x=\varnothing\)
c)\(2x^2-7x^2+5=0\)
+) \(a+b+c=2+\left(-7\right)+5=7-7=0\)
Do đó, phương trình có 2 nghiệm sau:
\(x=1\) và \(x=\dfrac{5}{2}=2,5\)
➤\(x\in\left\{1;2,5\right\}\)
d) \(x^2-8x-48=0\)
+)\(\Delta=\left(-8\right)^2-4\cdot1\cdot\left(-48\right)=64+192=266>0\)
\(\Leftrightarrow\sqrt{\Delta}=\sqrt{266}\)
➢Do đó, ta có: \(\left[{}\begin{matrix}x=\dfrac{\sqrt{266}-\left(-8\right)}{2\cdot2}=\dfrac{\sqrt{266}+8}{4}\\x=\dfrac{-\sqrt{266}-\left(-8\right)}{2\cdot2}=\dfrac{8-\sqrt{266}}{4}\end{matrix}\right.\)
➤ \(x\in\left\{\dfrac{8+\sqrt{266}}{4};\dfrac{8-\sqrt{266}}{4}\right\}\)
1 thưc hiện phép tính
a, 7x2.(2x3+3x5 ) b,(x3-x2+x-1):(x-1)
2 tìm x biết x : x2-8x+7=0
1. a) \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=14x^5+21x^7\)
b) \(\left(x^3-x^2+x-1\right):\left(x-1\right)=\dfrac{x^3-x^2+x-1}{x-1}\)
\(=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{x-1}=\dfrac{\left(x-1\right)\left(x^2+1\right)}{x-1}=x^2+1\)
2: \(x^2-8x+7=0\)
=>\(x^2-x-7x+7=0\)
=>\(x\left(x-1\right)-7\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x-7\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
1:
a: \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=21x^7+14x^5\)
b: \(\dfrac{x^3-x^2+x-1}{x-1}=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{\left(x-1\right)}\)
\(=x^2+1\)
1)
\(a,7x^2\cdot(2x^3+3x^5)\\=7x^2\cdot2x^3+7x^2\cdot3x^5\\=14x^5+21x^7\\---\\b,(x^3-x^2+x-1):(x-1)(dkxd:x\ne 1)\\=[x^2(x-1)+(x-1)]:(x-1)\\=(x-1)(x^2+1):(x-1)\\=x^2+1\)
2)
\(x^2-8x+7=0\\\Leftrightarrow x^2-x-7x+7=0\\\Leftrightarrow x(x-1)-7(x-1)=0\\\Leftrightarrow (x-1)(x-7)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
\(\text{#}Toru\)
(-3x5+6x2-4x3+5x4):2x2
\(=-\dfrac{3}{2}x^3+3-2x+\dfrac{5}{2}x^2\)
Tính: (3x5-2x3+4x2) : 2x2
Lời giải:
$(3x^5-2x^3+4x^2):2x^2=[2x^2(\frac{3}{2}x^3-x+2)]:2x^2$
$=\frac{3}{2}x^3-x+2$