Những câu hỏi liên quan
H24
Xem chi tiết
NL
8 tháng 7 2021 lúc 22:02

a.

Hàm số đồng biến trên R khi và chỉ khi:

\(\left\{{}\begin{matrix}7-m\ge0\\\sqrt{7-m}-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le7\\m< 6\end{matrix}\right.\) \(\Leftrightarrow m< 6\)

b. Để hàm nghịch biến trên R

\(\Leftrightarrow m^2+m+1< 0\)

\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\) (vô lý)

Vậy ko tồn tại m thỏa mãn yêu cầu

Bình luận (0)
H24
13 tháng 7 2021 lúc 15:19

cảm ơn tất cả mọi người,đấy là bài cuối của tuần này rồi

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 11 2023 lúc 19:24

a: \(y=-x^3+\left(m+2\right)x^2-3x\)

=>\(y'=-3x^2+2\left(m+2\right)x-3\)

=>\(y'=-3x^2+\left(2m+4\right)\cdot x-3\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\left(2m+4\right)^2-4\cdot\left(-3\right)\left(-3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+16m+16-4\cdot9< =0\)

=>\(4m^2+16m-20< =0\)

=>\(m^2+4m-5< =0\)

=>\(\left(m+5\right)\left(m-1\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+5>=0\\m-1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-5\\m< =1\end{matrix}\right.\)

=>-5<=m<=1

TH2: \(\left\{{}\begin{matrix}m+5< =0\\m-1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=1\\m< =-5\end{matrix}\right.\)

=>\(m\in\varnothing\)

b: \(y=x^3-3x^2+\left(1-m\right)x\)

=>\(y'=3x^2-3\cdot2x+1-m\)

=>\(y'=3x^2-6x+1-m\)

Để hàm số đồng biến trên R thì \(y'>=0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3>0\\\left(-6\right)^2-4\cdot3\left(1-m\right)>=0\end{matrix}\right.\)

=>\(36-12\left(1-m\right)>=0\)

=>\(36-12+12m>=0\)

=>12m+24>=0

=>m+2>=0

=>m>=-2

Bình luận (0)
NT
Xem chi tiết
DT
29 tháng 9 2016 lúc 10:43

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 11 2023 lúc 20:47

\(m^2-4m+4=m^2-2\cdot m\cdot2+2^2=\left(m-2\right)^2>=0\forall m\)

Để hàm số \(y=\left(m^2-4m+4\right)x-2021\) đồng biến trên R thì

\(m^2-4m+4>0\)

=>\(\left(m-2\right)^2>0\)

=>m-2<>0

=>m<>2

Bình luận (0)
TT
Xem chi tiết
NT
26 tháng 9 2021 lúc 20:26

a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)

b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)

hay m>4

Bình luận (0)
HT
Xem chi tiết
KT
Xem chi tiết
H24
4 tháng 8 2016 lúc 21:54

a  đồng biến khi 5+m>0
b nghịch biến khi \(m< 1\)
c nghịch biến khi \(5-43+m^2< 0\)

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 11 2023 lúc 8:36

a: \(y=-x^3-3x^2+\left(5-m\right)x\)

=>\(y'=-3x^2-3\cdot2x+5-m\)

=>\(y'=-3x^2-6x+5-m\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(36+12\left(5-m\right)< =0\)

=>\(36+60-12m< =0\)

=>\(-12m+96< =0\)

=>-12m<=-96

=>m>=8

b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)

=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)

=>\(y'=3x^2+\left(4m-4\right)x+m\)

Để hàm số đồng biến trên R thì y'>=0 với mọi x

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)

=>\(16m^2-32m+16-12m< =0\)

=>\(16m^2-44m+16< =0\)

=>\(4m^2-11m+4< =0\)

=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\)

Bình luận (0)
NH
Xem chi tiết
NM
28 tháng 11 2021 lúc 9:45

\(a,\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}>0\)

Mà \(\sqrt{\dfrac{m-2}{m+3}}\ge0\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}\ne0\Leftrightarrow m\ne2;m\ne-3\)

\(b,y=m^2x-5mx-6m=x\left(m^2-5m\right)-6m\)

Đồng biến \(\Leftrightarrow m^2-5m>0\Leftrightarrow m\left(m-5\right)>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>5\end{matrix}\right.\)

\(c,y=x\left(\dfrac{m+5}{m-2}-1\right)+\sqrt{m-2}=\dfrac{7}{m-2}x+\sqrt{m-2}\)

Đồng biến \(\Leftrightarrow\dfrac{7}{m-2}>0\Leftrightarrow m-2>0\Leftrightarrow m>2\)

Bình luận (0)