Những câu hỏi liên quan
CM
Xem chi tiết
NT
10 tháng 11 2023 lúc 21:53

 

\(sin\left(2x+\dfrac{\Omega}{2}\right)=sin\left(x-\dfrac{\Omega}{3}\right)\)

=>\(\left[{}\begin{matrix}2x+\dfrac{\Omega}{2}=x-\dfrac{\Omega}{3}+k2\Omega\\2x+\dfrac{\Omega}{2}=\Omega-x+\dfrac{\Omega}{3}+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{5}{6}\Omega+k2\Omega\\3x=\dfrac{4}{3}\Omega-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{5}{6}\Omega+k2\Omega\\x=\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\end{matrix}\right.\)

Bình luận (1)
PP
Xem chi tiết
NT
5 tháng 9 2023 lúc 21:41

1: cos(2x+pi/6)=cos(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=3x-pi/3+k2pi

=>5x=pi/6+k2pi hoặc -x=-1/2pi+k2pi

=>x=pi/30+k2pi/5 hoặc x=pi-k2pi

2: sin(2x+pi/6)=sin(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=pi-pi/3+3x+k2pi

=>5x=pi/6+k2pi hoặc -x=2/3pi-pi/6+k2pi

=>x=pi/30+k2pi/5 hoặc x=-1/2pi-k2pi

Bình luận (1)
NT
6 tháng 9 2023 lúc 13:49

1) \(cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{3}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-3x+k2\pi\\2x+\dfrac{\pi}{6}=-\dfrac{\pi}{3}+3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{3}-\dfrac{\pi}{6}+k2\pi\\3x-2x=\dfrac{\pi}{3}+\dfrac{\pi}{6}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\) \(\left(k\in N\right)\)

Bình luận (1)
TT
Xem chi tiết
SB
Xem chi tiết
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 16:01

\(\sin 2x = \sin \left( {x + \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{4} + k2\pi \\2x = \pi  - \left( {x + \frac{\pi }{4}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\3x = \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{\pi }{4} + \frac{{k2\pi }}{3}\end{array} \right.\)

Bình luận (0)
NH
Xem chi tiết
NT
19 tháng 8 2023 lúc 9:29

a: \(\Leftrightarrow sin\left(\dfrac{x}{3}-\dfrac{pi}{4}\right)=sinx\)

=>x/3-pi/4=x+k2pi hoặc x/3-pi/4=pi-x+k2pi

=>2/3x=-pi/4+k2pi hoặc 4/3x=5/4pi+k2pi

=>x=-3/8pi+k3pi hoặc x=15/16pi+k*3/2pi

b: =>(sin3x-sin2x)(sin3x+sin2x)=0

=>sin3x-sin2x=0 hoặc sin 3x+sin 2x=0

=>sin 3x=sin 2x hoặc sin 3x=sin(-2x)

=>3x=2x+k2pi hoặc 3x=pi-2x+k2pi hoặc 3x=-2x+k2pi hoặc 3x=pi+2x+k2pi

=>x=k2pi hoặc x=pi/5+k2pi/5 hoặc x=k2pi/5 hoặc x=pi+k2pi

Bình luận (0)
H24
Xem chi tiết
HP
24 tháng 10 2021 lúc 14:22

a, \(cos\left(x-\dfrac{\pi}{3}\right)-sin\left(x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow cos\left(x-\dfrac{7\pi}{12}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow x-\dfrac{7\pi}{12}=\pm\dfrac{\pi}{4}+k2\pi\)

...

Bình luận (0)
HP
24 tháng 10 2021 lúc 14:24

b, \(\sqrt{3}sin2x+2cos^2x=2sinx+1\)

\(\Leftrightarrow\sqrt{3}sin2x+2cos^2x-1=2sinx\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x+\dfrac{1}{2}cos2x=sinx\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+k2\pi\\2x+\dfrac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Bình luận (1)
TB
Xem chi tiết
NL
16 tháng 9 2021 lúc 23:18

3.

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

Bình luận (0)
TB
16 tháng 9 2021 lúc 23:07

câu 2 mình sửa lại đề bài một chút là: sin(cosx)=1 ạ

Bình luận (0)
NL
16 tháng 9 2021 lúc 23:16

1.

\(sin\left(sinx\right)=0\)

\(\Leftrightarrow sinx=k\pi\) (1)

Do \(-1\le sinx\le1\Rightarrow-1\le k\pi\le1\)

\(\Rightarrow-\dfrac{1}{\pi}\le k\le\dfrac{1}{\pi}\Rightarrow k=0\) do \(k\in Z\)

Thế vào (1)

\(\Rightarrow sinx=0\Rightarrow x=n\pi\)

2.

\(sin\left(cosx\right)=1\Leftrightarrow cosx=\dfrac{\pi}{2}+k2\pi\)

Do \(-1\le cosx\le1\Rightarrow-1\le\dfrac{\pi}{2}+k2\pi\le1\)

\(\Rightarrow-\dfrac{1}{2\pi}-\dfrac{1}{4}\le k\le\dfrac{1}{2\pi}-\dfrac{1}{4}\) 

\(\Rightarrow\) Không tồn tại k thỏa mãn

Pt vô nghiệm

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 16:03

a)

\(\sin \left( {2x + \frac{\pi }{4}} \right) = \sin x \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{4} = x + k2\pi \\2x + \frac{\pi }{4} = \pi  - x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{4} + k2\pi \\3x = \pi  - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{4} + k2\pi \\x = \frac{\pi }{4} + \frac{{k2\pi }}{3}\end{array} \right.;k \in Z\)

b)

\(\begin{array}{l}\sin 2x = \cos 3x\\ \Leftrightarrow \cos 3x = \cos \left( {\frac{\pi }{2} - 2x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{2} - 2x + k2\pi \\3x =  - \left( {\frac{\pi }{2} - 2x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} + k2\pi \\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\end{array}\)

c)

\(\begin{array}{l}{\cos ^2}2x = {\cos ^2}\left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x =  - \cos \left( {x + \frac{\pi }{6}} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x = \cos \left( {\pi  - \left( {x + \frac{\pi }{6}} \right)} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x = \cos \left( {\frac{{5\pi }}{6} - x} \right)\end{array} \right.\end{array}\)

Với \(\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}2x =  - \left( {x + \frac{\pi }{6}} \right) + k2\pi \\2x = x + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x =  - \frac{\pi }{6} + k2\pi \\x = \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{{18}} + \frac{{k2\pi }}{3}\\x = \frac{\pi }{6} + k2\pi \end{array} \right.\)

Với \(\cos 2x = \cos \left( {\frac{{5\pi }}{6} - x} \right) \Leftrightarrow \left[ \begin{array}{l}2x = \frac{{5\pi }}{6} - x + k2\pi \\2x =  - \left( {\frac{{5\pi }}{6} - x} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = \frac{{5\pi }}{6} + k2\pi \\x =  - \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3}\\x =  - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)

Bình luận (0)